SYLLABUS FOR PG ENTRANCE TEST-2022(MICROBIOLOGY)

Group -A

History of Development of Microbiology

Development of microbiology as a discipline, Spontaneous generation *vs.* biogenesis. Contributions of Anton van Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming. Role of microorganisms in fermentation, Germ theory of disease, Development of various microbiological techniques and golden era of microbiology, Development of the field of soil microbiology: Contributions of Martinus W. Beijerinck, Sergei N. Winogradsky, Selman A.Waksman Establishment of fields of medical microbiology and immunology through the work of Paul Ehrlich, Elie Metchnikoff, Edward Jenner.

Diversity of Microbial World

A. Systems of classification

Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility. Difference between prokaryotic and eukaryotic microorganisms.

B. General characteristics of different groups: Acellular microorganisms (Viruses, Viroids, Prions) and Cellular microorganisms (Bacteria, Algae, Fungi and Protozoa) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance.

• Algae

History of phycology with emphasis on contributions of Indian scientists; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae with suitable examples: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles. Applications of algae in agriculture, industry, environment and food.

• Fungi

Historical developments in the field of Mycology including significant contributions of eminent

mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic importance of fungi with examples in agriculture, environment, Industry, medicine, food, biodeterioration and mycotoxins.

Protozoa

General characteristics with special reference to Amoeba, Paramecium, Plasmodium, Leishmania and Giardia.

Bacterial Systematics

Aim and principles of classification, systematics and taxonomy, concept of species, taxa, strain; conventional, molecular and recent approaches to polyphasic bacterial taxonomy, evolutionary chronometers, rRNA oligonucleotide sequencing, signature sequences, and protein sequences. Differences between eubacteria and archaebacteria.

Cell organization

Cell size, shape and arrangement, glycocalyx, capsule, flagella, endoflagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Gram-positive and Gram-negative cell walls, Archaebacterial cell wall, Gram and acid fast staining mechanisms, lipopolysaccharide (LPS), sphaeroplasts, protoplasts, and L-forms. Effect of antibiotics and enzymes on the cell wall. Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes.

Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid, chromosome and plasmids Endospore: Structure, formation, stages of sporulation.

Bacteriological techniques

Pure culture isolation: Streaking, serial dilution and plating methods; cultivation, maintenance and preservation/stocking of pure cultures; cultivation of anaerobic bacteria, and accessing non-culturable bacteria.

Microscopy

Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope, Fluoresence Microscope, Confocal microscopy, Scanning and Transmission Electron Microscope.

Growth and nutrition

Nutritional requirements in bacteria and nutritional categories;

Culture media: components of media, natural and synthetic media, chemically defined media, complex media, selective, differential, indicator, enriched and enrichment media *Physical methods of microbial control*: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation. *Chemical methods of microbial control*: disinfectants, types and mode of action.

Reproduction in Bacteria

Asexual methods of reproduction, logarithmic representation of bacterial populations, phases of growth, calculation of generation time and specific growth rate.

Nature and Properties of Viruses

Introduction: Discovery of viruses, nature and definition of viruses, general properties, concept of viroids, virusoids, satellite viruses and Prions. Theories of viral origin Structure of Viruses: Capsid symmetry, enveloped and non-enveloped viruses Isolation, purification and cultivation of viruses Viral taxonomy: Classification and nomenclature of different groups of viruses

Bacteriophages

Diversity, classification, one step multiplication curve, lytic and lysogenic phages (lambda phage) concept of early and late proteins, regulation of transcription in lambda phage.

Viruses and Cancer

Introduction to oncogenic viruses.

Types of oncogenic DNA and RNA viruses: Concepts of oncogenes and proto-oncogenes.

Prevention & control of viral diseases

Antiviral compounds and their mode of action Interferon and their mode of action General principles of viral vaccination.

Group-B

Bioenergetics

First and second laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy, and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant. Coupled reactions and additive nature of standard free energy change, Energy rich compounds: Phosphoenolpyruvate, 1,3-Bisphosphoglycerate, Thioesters, ATP.

Carbohydrates

Families of monosaccharides: aldoses and ketoses, trioses, tetroses, pentoses, and hexoses. Stereo isomerism of monosaccharides, epimers, Mutarotation and anomers of glucose. Furanose and pyranose forms of glucose and fructose, Haworth projection formulae for glucose; chair and boat forms of glucose, Sugar derivatives, glucosamine, galactosamine, muramic acid, N- acetyl neuraminic acid, Disaccharides; concept of reducing and non-reducing sugars, occurrence and Haworth projections of maltose, lactose, and sucrose, Polysaccharides, storage polysaccharides, starch and glycogen. Structural Polysaccharides, cellulose, peptidoglycan and chitin.

Lipids

Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids. Triacyl glycerols structure, functions and properties. Saponification. Structural lipids. Phoisphoglycerides: Building blocks, General structure, functions and properties. Structure of phosphatidylethanolamine and phosphatidylcholine, Sphingolipids: building blocks, structure of sphingosine, ceramide. Special mention of sphingomyelins, cerebrosides and gangliosides Lipid functions: cell signals, cofactors, prostaglandins, Introduction of lipid micelles, monolayers, bilayers.

Proteins

Functions of proteins, Primary structures of proteins: Amino acids, the building blocks of proteins. General formula of amino acid and concept of zwitterion. Titration curve of amino acid and its Significance, Classification, biochemical structure and notation of standard protein amino acids Ninhydrin reaction .Natural modifications of amino acids in proteins hydrolysine, cystine and hydroxyproline, Non protein amino acids: Gramicidin, beta-alanine, D-alanine and D-glutamic acid Oligopeptides: Structure and functions of naturally occurring glutathione and insulin and synthetic aspartame. Secondary structure of proteins: Peptide unit and its salient features. The alpha helix, the beta pleated sheet and their occurrence in proteins, Tertiary and quaternary structures of proteins. Forces holding the polypeptide together. Human haemoglobin structure, Quaternary structures of proteins.

Enzymes

Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP, coenzyme

NAD, metal cofactors, Classification of enzymes, Mechanism of action of enzymes: active site, transition state complex and activation energy. Lock and key hypothesis, and Induced Fit hypothesis. Significance of hyperbolic, double reciprocal plots of enzyme activity, Km, and allosteric mechanism. Definitions of terms – enzyme unit, specific activity and turnover number, Multienzyme complex : pyruvate dehydrogenase; isozyme: lactate dehydrogenase, Effect of pH and temperature on enzyme activity. Enzyme inhibition: competitive- sulfa drugs; non-competitive-heavy metal salts.

Vitamins

Classification and characteristics with suitable examples, sources and importance:A,D,E,K,B complex and C.