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ABSTRACT

In this article we solve a global crude steel production transportation model
under the effect of air pollution using fuzzy reasoning technique. First of
all, we formulate a cost minimization crisp supply chain model under some
specific assumptions which is basically the extension of the article of
Bhattacharya et a/. (2020). Then considering fuzzy system we have shown
that, fuzzy reasoning can ultimately optimize the model with respect to
some other existing model. Numerical study, graphical illustrations are
done to validate the model.

Introduction

Production of crude steel is a noteworthy issue
for economic growth of any country in the
world. Because of its versatile uses in different
sectors, it is now becoming a product of ‘all
time’ uses in our day-to-day activities. But its
production process includes several phases
requiring major components such as iron ore
as raw material, coals for burning and heat
generation, water for cooling the system and
the uses of high technology for controlling
pollution. Karmakar et a/ (2017, 2018) studied
extensively to explore the production and
production remanufacturing process of a
Sponge Iron industry in which they were able
to construct functional dependencies of
production reproduction quantities with respect
to the amount of pollution through the
cumulative effect of air, soil and water

contamination by the harmful particles
containing Sulphur Dioxide (SO,), Sulphur
Trioxide (SO,), Nitrogen Dioxide (NO,), Led
(Pb), Carbon Di oxide (CO,), Carbon
Monoxide (CO) etc. However, the problem of
transporting goods is another critical issue of
a production process because it includes fuel
costs as well as carbon emission cost.
Researchers are basically involved in
controlling carbon emission in supply chain
(SC) networks (Hernandez-Pellon and
Fernandez-Olmo (2018), Ebadi et a/. (2016),
Mancini et a/. (2016) etc.) in recent times. But
the concept of need based production and its
corresponding pollution, pollution due to
transportation is not studied yet.

At the early stage, most of the models are
solved by deterministic and stochastic
environment. But they do not obey the realistic
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models of real-world problems because of the
versatile nature of the parameters associated
with the models. To overcome the gaps of the
deterministic models, researchers were
involved to develop the stochastic models
where the parameters involved in a model are
assumed to be a random number each or every
at a time. At the carly stage, the operation
research (OR) practitioner’s/ decision maker’s
(DM’s) problem was how to capture the
uncertainty of the several components of any
kind of management problems. After the
invention of Zadeh (1965)’s fuzzy set theory
the situations become quite favorable to all the
DM. Since then, numerous research articles
have been made to explain and control the
complexities of the competitive real-world
phenomenon. Some notable works over the
EOQ models on fuzzy environments may be
pointed out over here. Researchers like De et
al. (2014), De and Sana (2015) discussed a
deteriorating EOQ model with natural idle time
for imprecise demand and in a backlogging
model by employing hesitant fuzzy set. The
concepts of dense fuzzy set studied by De and
Beg (2016) to discuss the frequent learning
effect of the fuzzy parameters and
contemporarily, the concepts of cloudy fuzzy
set were coined by De and Mahata (2017) to
enhance the same for continuous time
dependent learning effect. Analyzing the
behavior of human thinking process De (2017)
developed a new fuzzy set namely Triangular

dense fuzzy lock set along with its new
defuzzification method. After this invention
many articles have been made by eminent
researchers [De and Mahata (2019a, 2019b),
De and Sana (2013a, 2013b, 2018) etc.] to
control the individual or group decision making
problems on pollution sensitive inventory
modelling. The study of fuzzy linguistic dense
fuzzy lock set has been discussed by De and
Mahata (2019c) recent times to capture the cost
effectiveness in trade credit policy. Moreover,
researchers like Zadeh (1975), Pal and Mandal
(1991) etc. worked over linguistic fuzzy system
incorporating the fuzzy approximates
reasoning. Fuzzy solutions in fuzzy lincar
programming problems and preference based
on relational fuzzy system were analyzed by
Zimmermann (1985), Ramik and Rimanek
(1985), Tanaka and Asai (1984) etc.

However, for any kind of optimization problem
with some constraints the concept of duality
plays an important role to characterize the
bounds of the objective values. Ovchinnikov (
1991) discussed the duality principle in fuzzy
set theory. Wu ( 2003, 2007 ) worked
extensively over duality theory in fuzzy linear
programming problems with fuzzy
coefficients, necessity theory and saddle point
optimality conditions in fuzzy optimization
problems. Zhang et a/. (2005) studied duality
theory in fuzzy mathematical programming
problems with fuzzy coefficients. Convex
fuzzy mapping with differentiability and its
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application in fuzzy optimization was
discussed by Panigrahi et a/. (2008). Song and
Zhao (2010) developed solution procedures of
fuzzy multi-objective optimization of passive
suspension parameters. Beyond these concepts,
a new approach to duality in fuzzy LPP has
been analysed by Nasseri and Ebrahimnejad
(2012).
optimization problems an extension on duality

To deal with nonlinear fuzzy

theory was minutely discussed by Zou (2015).
Very recent, De et al. ( 2021a) studied a
pollution sensitive model using fuzzy
approximate reasoning . Subsequently De et
al. (2021b) developed another model and
solved it under volumetric fuzzy system.

From the above study it is seen that not a single
article has been studied on fuzzy approximate
reasoning to design the inventory control
problems. Thus, in this article we solve a
production transportation model with pollution
index under the effect of fuzzy reasoning on
the cost parameters of the model. The
equivalent crisp problem is constructed by the
help of fuzzy alpha cuts and dual fuzzy £ cuts

A =< x,u(x) > where u(x) =
0

for the specific feasible region posed by an
approximation index. This article organizes as
follows: section 1 includes introduction;
Section 2 includes materials and methods
describing the concept approximate fuzzy
reasoning, dual space, data collection, curve
fitting and problem definition. Section 3
discusses the model formulation and solution.
Section 4 develops results; section 5 indicates
discussion by graphical illustration. Section 6
describes conclusion.

2. Materials and Methods [ De (2020)]
This section is designed by some basic
definitions of fuzzy membership functions and
concepts of fuzzy reasoning. We note that we
are going to discuss the minimization problem
of the application of OR problems, so we take
left fuzzy numbers (L-fuzzy numbers)
throughout the article.

2.1 Defining fuzzy membership function
Definition 1: L- fuzzy number: Let us
consider the L fuzzy number of the form
where and x, as initial value of the fuzzy
number 4 and § is the maximum tolerance

if  x=x
1-2=if

ifx<xy—96

x0—5SxSx0
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level along with its graphical representations (shown in Fig.-1)

.xo - 6X0

Fig.-1: Membership function of
Definition 2: Let A be the fuzzy number defined as above then its approximated form is denoted
as u,(x) (shown in Fig.2) to be obtained from the following possibility formula (obtained from
Fig.-3)

palx) = POSS(Ml () Uy (x)) = piq (x) + pp () — paq o)tz ()

1 ifx > 2y 0 ifx>=2y
where g, (x) = {% ify <x<2yand p,(x) =pu(x=x,—8) = "°y‘5 —1ify<x<2y
0 ifx<y 1lifx<y
A 1) Ha(x) 12(0) (a0 1) () ()
A
1 """""""""" T
! T1 ---------------
! i a
0 1 ; x - -
Xg—4 y Xo 2y l 0 > x
Xg—8 y Xo 2y

Fig.-2: Membership function of fuzzy reasoning A Fig.-3: Approximating membership of 4
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Now from above we get

1 if x=2y | = (E_xo—zS)
_Jlx—m ify<x<2y Ty 2
mal) =97, h 2(x0=5)

2.2 Defining the Probability density function of the random variable Y
Let the probability density function of the random variable Y is given by

— Xo=V i —
p(y) = %{1 5 YU XTOSYSX G that we always have f_t:cp(y) dy=1.

0 otherwise
2.3 Approximating « —cut of u(x)

J’_
From the fuzzy set 4 ,(x) we construct the & —cut sets as follows: Ix -m > a = x > m i <

a+3-2&0=9 2 _ _
e = Y (@t3)2(o-8)y  pe expected value of the @ — cuts of uy(x) is obtained as E(x) =
(§_y_2) 2y-2(xg—9)

(a+3)E(y?)-2(xo—-8)E(¥) +o 2 X 8
s e I where, V) = [ yp() dy = 5 [7° s yly = (o = )}y = (%0 —3)

Xo

And similarly, E (y?) = % s vy = (xg — 8)}dy = (xf;' - § Sxg + %2) . On substitution we have

2 52 2 52
a(xg —§6x0+?) +(x§ +§Sx0 —?)

E(x) = 2 . The rest part of pu4(x) gives

Xo—6

S -1 <a=2>x <6+ (a +1)y

and giving the expectations xp < 5§+ (@ + DE®Y) 2% <5+ (¢ +1) (xo - g)
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2.4 Dual B cuts and dual space

Definition 3: Let u,(x) > a with 0 <a < 1 be the a—cut of the fuzzy set 1 (x) defined on the
subset of the universal set X. Let us consider another cut £ corresponding to o such that 0 <o f
< 1. Then Bis said to be dual cut of x (x) over the convex set o < 1.

4 Fumya—cuts Dual axis & =3

Fuzzy
reasoning
> B—cuts

Fig.4: Exchange of dual feasible space

2.5 Approximating feasible space [De(2020)]
Introducing k as approximation parameter (commonly known as approximation index) in such
a way that we could be able to get x, > dalways and this can be done by approximating x such

2
that x, > 6 [;Taﬁj with aff <I and <1 where, a—f together constitute a dual feasible space.

2.6 Problem Definition under Production —Consumption- Pollution scenario

From the above discussion and motivation over the Global Crude Steel production plant model

it is seen that Pollution depends upon Production and its transportation. Thus, we may define

the research problem in the following way:

1)  What will be the actual amount of Global Crude Steel Production such that the aggregate
pollution level/ index become minimum?

i1) What should be the actual Consumption level such that the World remains greenery?

1i1) How much beneficial the approximate fuzzy reasoning method over traditional optimization
method?

2.7 Data collection and curve fitting
Let us consider the secondary data of major 61 crude steel producing countries of the world for
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the year 2017. We have gathered the data of crude steel production (in terms 10° MT),
consumption (10° MT) (demand), pollution index for 61 countries each. The curve under study
is three dimensional, so using production rate (K), demand (consumption) rate (D) and pollution
index (P) as three-dimensional variables and taking the help of MATLAB software we fit plane
curve in such a way that the R? (a statistic) value gets maximum value and the errors assume
minimum value. Thus, we obtain equation-1 with its corresponding graphical representation as
follows.

K-1.083D =3378-0.7318 P (1)
For setting a model we have considered the following inputs (shown in Table 1) which are
generally used in several crude steel production sectors in the world.

Table-1: Costs of the proposed model

Set-up cost per cycle | Holding cost per cycle in Deterioration cost per cycle in | Preservation
$20000 production plant per MT production plant per unit item | technology cost per
$5 $10 cycle
$1000
Pollution cost due to | Holding cost per cycle in Production cost per MT Deterioration fraction
production per MT retailer plant per MT $327.56 0.002
$43.89 $10
Social cost of carbon | Transportation cost per Length covered by freight Scale parameter for
per MT gallon fuel train preservation cost (A)
$417 $3.5 600 Miles 0.00001
3. Model formulation and solution

In this section we formulated our proposed model by considering some notations and

assumptions.
3.1.

Notations and Assumptions

We may consider the following notations and assumptions for developing the model.

Notations

K Manufacturing rate per cycle (decision variable)

D Retailer’s demand rate per cycle

6 Deterioration fraction
& Technology uses cost per cycle ($) (M(E)=0(1-e %), 0< a<l)
T, Production time (decision variable)

T, Inventory opening time of Retailer
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T, Time at zero inventory in retailer’s plant

S, Set up cost ($) for supplier’s production plant

S, Set up cost ($) for retailer’s plant

h, Holding cost for supplier’s plant

h, Holding cost for retailer’s plant

C, Global social cost of carbon ($) incurs due to transportation

C, Transportation cost per unit gallon fuel ($)

C,, Pollution cost per unit item production ($)

C,, Production cost of unit item (§)

d_. Deterioration cost of unit item ($)

L Transported distance of the produced items

P Pollution index for each country

Q Produced items after time

Assumptions

1.Excessive use of raw materials might destroy the environment.

2.Deteriorated items cannot be recoverable.

3.The time requires for the travel (up and down) of rail freight train equals the manufacturing
time per cycle.

4.No deterioration is viewed in the final product during transportation and retailer’s inventory.

3.2. Construction of crisp and fuzzy mathematical model | Extension of Bhattacharya et
al. (2021)]

a) Supplier’s problem

Let the production process starts at supplier’s plant with constant production rate K and it
continues up to time 7'. During the production run time 7', some deterioration is viewed which
is checked by using modern technology. The inventory level gradually increases and it reaches
its maximum value at the end of time 7'. Then finished product gets ready to transport to the
retailer at time span (7', - 7)) . During transportation, the production again starts at zero stock
with manufacturing rate K. Due to application of preservation technology, the reduced
deterioration is & = 8 —m (&) (say). Therefore, the governing differential equation of supplier’s

dq (t)
dr

problem is =K-5q(1),q,(0)=0 2)
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Solving (2) we get, q,(t) = %(1 —e™¥), 0<t<Ty 3)
The inventory holding cost (HCS) for supplier’s problem is given by

HCS = hy [} gy (£)dt = 5 [T + 9_8;1‘1] )
Then the production cost (PC) is given by PC = Cp, [ fOT ‘g, (t)dt] = (;K [T1 + 6_8;1_1] (5)
Also, the deterioration cost (DC) is given by DC = d.(KT; — Q) = d.K [T1 - 1_9(;”1] 6)
Where Q =%(1—e™T) = D(T; — Ty) (7)
The transportation cost (TC) is given by TC = Cr X % = 0.00424628LQCr €))
Pollution cost due to transportation (TPC) is given by

TPC = Cg X % X 22.38 X 0.000454 = 0.0000431445LQCs )
Pollution cost due to production (PPC) is given by PPC = Cp, X KT} (10)
The set-up cost (SCS) for supplier’s problem is given by SCS = S, (11)

b) Retailer’s problem

At the time T, the items are received and began to sale at the retailer’s counter and the
inventory will get at time Ty because of demand D. During the interval [T,, T3], the
variation in the inventory depletes for demand only. Therefore, the governing differential
equation of retailer’s problem is

dggltl _

= -D, T,=t=<T; q;(Tz5)=0 (12)

Which gives g2(t) =D(T; —t), T =t=<T; (13)

The inventory holding cost (HCR) for retailer’s problem is given by

h

HCR = hy [, q2(8)dt = "22(T; — T3)? (14)

-
r

The set-up cost (SCR) for retailer’s problem is given by S5CR = 5, (15)
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Fig. 5. Production-Transportation Model

Combining supplier's problem and retailer's problem, the total average joint inventory system
cost (z) is given by

z= i{hl_K (T1 + e—5T1-1) + d.K (T1 - 1_9-5T1) + coradt (T1 + 2_6;1_1) + Cpor X KTy + 5 } + 2(T21—T1){CT X

nls F) ) 5
0.00424628LQ + Cs x 0.0000431445LQ } + ;{M + sz} (16)
(T3—T2) 2

Therefore, the basic mathematical problem of the model is obtained as
Minimize z(K, Ty, Q, P, D)
subject to, T, = 2T, Ty = =T,
] . 2 21223 21 (17)
Q=5(1-e*m) =0T,
K —1.083D = 33.78 — 0.7318P
Minimizez =F, + F,
This can be defined in another f subject to 18
1S can b€ delined 1n another rorm as
Q=5(1-e?n) =D, (18)

K —1.083D = 33.78 — 0.7318P

FE=afitahtafitafitsfitefstof;
F=cfstcfo
(C1'CZIC3!C4-!CSJC61C7:CB'C9)E(hlrdc:cpdicpo:sllCT:CsthiSZ)
1-¢~0T1
_L(T _175-5T1) S
fl_é»Tl 1 s le_ T, (19)
fi=2(r ——H_m) fi=K fs==
3 T s\ s JaT s T

_0.00424628LK(1-e~0T1) . 0.0000431445LK (1-e~%T1)
fo = 7=
T16 T16

With the condition: <

_oh e _ 1
fi=2f =1
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Now, we consider all the cost parameters associated with the model might follow
triangular fuzzy number as defined in the section 2 then the equivalent fuzzy prob-
lem of the proposed model is as below
Minimize 7 = F, + F,
Subject to, Q =% (1 —e°™) = DT, (20)
K —1.083D = 33.78 — 0.7318P

Where{ﬂ=afl+c’éfz+§ f3~+5;} f4~+€é f5+év6 f6+é; f7 (21)
F,=0C fag+G fo

For defuzzification of the problem (20) using the concepts of approximate fuzzy rea-

soning studied at subsections (2.3- 2.5) and « — cuts of fuzzy numbers the equivalent
crisp problem is given by

Maximizea , 0 <a <1
Subjectto E(Zy,) <Zy+ (1—a)d,

2 .
o2 8 (5r), i=12...9 @)
af<1,B<1

Q= §(1 — e~ %) =DT,,K — 1.083D = 33.78 — 0.7318P

E(Zy) =Cia fit+ Coa o+ C3a f3+ Caa fa + Csa fs + Coa fo + Cra f7 + Coa f3 + Coa fo
5.:2 §5.:2
a(cfo—§61icio+%>+(cﬁ, +§51icio‘%) .
Cig = 51 ,i=12,...9
ci0+T
K(T 1_2—6T1> (23)

K 1-e~T1 17s K 1-e~%T1 1
f1=8_T1(T1_ 5 );fzz T ;f3=ﬁ(T1_ 5 )'f4=K'f5=E

fo= 0.00424628LK(1-e~71) f, = 0.0000431445LK (1—e~87T1) _bny f, = 1

6 7,6 1J7 T, 6 »J8 T )9 T g
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4. Results
In this section we illustrate the novelty of the methodology by using numerical data collected
from a crude steel industry.
4.1 Crisp optimal solution
Using this data set stated in Table 1 and utilizing the pollution function (1) in the main problem
(18) with the condition (19) we get the optimal results by taking the help of LINGO software
and they are put in Table 2.

Table-2: Crisp solution of the proposed model
P* K* D* T]* TZ* T3* Q* Z*
26 280.57 | 24544 1.45 2.18 3.625 | 35589 | 4834268

Table 2 shows the optimal average inventory cost $ 48342.68 with the optimal order quantity
355.89 MT, production time 1.45 months. The optimal production rate and demand rate is
280.57 MT and 245.44 MT. In this case the pollution index takes the value explicitly.

4.2 Optimal solution using fuzzy approximate reasoning method

For finding fuzzy optimal solution under the effect of fuzzy approximate reasoning we consider
the values of the fuzzy deviation parameters 6,=9000, 6, =1, 6,,=2,5, =60,5, = 9,6,,=2500,5,

° 720

=0.7,6,,= 80,5,,=2,5,,=2500, z = 44018 along with P=26,K=280.57, D= 245.44, T =1.45.

2770 2780
The fuzzy optimal solutions are tabulated in table 3.

Table 3: Optimal solution using approximate fuzzy reasoning method

o* £ Qo* T, * VA
0.21 0.99 302.201 1.23 46621.37
0.22 0.95 245 .44 1.00 46523.54
0.23 0.90 308.215 1.26 46412.74
0.25 0.85 311.790 1.27 46288.90
0.26 0.80 245 .44 1.00 46149.58
0.28 0.75 245 .44 1.00 45991.68
0.30 0.70 325.608 1.33 45811.23
0.32 0.65 331.642 1.35 45603.02
0.35 0.60 338.684 1.38 45360.11
0.38 0.55 347.01 1.41 45073.02
0.42 0.50 356.99 1.45 44728.53
0.47 0.45 302.953 1.23 44307.47
0.36 0.581 341.649 1.39 45257.85
0.34 0.611 245 .44 1.00 45419.27

Table 3 expresses the optimal average inventory cost, optimum order quantity and optimum
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production run time with respect to different o cuts and its dual cuts S We see that the average

inventory cost takes minimum value $ 44307.47 with respect to order quantity 302.953 MT

and production cycle 1.23 months for the primal-dual cut value (0.47, 0.45) and the average

inventory cost takes its maximum value $ 46621.37 with respect to order quantity 302.201 MT

and same production cycle 1.23 months for the primal-dual cut value (0.21, 0.99).

4.3. Sensitivity Analysis

To investigate the sensitivity of the parameters associated with the problem we take the changes

of the cost parameters as well as fuzzy deviation parameters from -20% to +20% ecach. The

optimal production run time, order quantity, average inventory cost and the primal-dual cut
value are furnished in Table 4A and 4B.
Table 4A: Sensitivity analysis of fuzzy cost parameters (optimum o)

*
Parameter | % Change | o* B* Q* T1* Z* 272 x100%
z
+20 0309 | 0588 | 24544 | 1.00 | 50233.55 391
+10 0519 | 0350 | 401798 | 1.64 | 48342.68 0
Cro -10 0320 | 0569 | 346.861 | 1.41 | 5014026 372
20 0519 | 0350 | 355896 | 145 | 48342.68 0
+20 0309 | 0588 | 24544 | 1.00 | 50233.55 391
+10 0519 | 0350 | 355896 | 145 | 48342.68 0
o -10 0519 | 0350 | 401798 | 1.64 | 48342.68 0
20 0519 | 0350 | 355896 | 145 | 48342.68 0
+20 0519 | 035 | 355896 | 145 | 48342.68 0
+10 0309 | 0.588 | 24544 1.00 | 50233.55 391
Co -10 0519 | 035 | 401798 | 1.64 | 48342.68 0
20 0519 | 035 | 401798 | 1.64 | 48342.68 0
+20 0272 | 0668 | 263876 | 1.08 | 50568.67 4.6
Cu +10 0288 | 0631 | 253262 | 1.03 | 5042548 431
-10 0519 | 035 | 389782 | 1.59 | 48342.68 0
20 0396 | 0471 | 24544 | 1.00 | 4944971 2.29
+20 0519 | 035 | 450651 | 1.84 | 48342.68 0
+10 0519 | 035 | 421457 | 172 | 4834268 0
Cso -10 0583 | 035 | 381736 | 1.56 | 47770.19 -1.18
20 0664 | 035 | 548.024 | 223 | 47037.93 2.7
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420 0299 | 0.609 | 246.852 | 1.01 | 50331.41 4.11
+10 0519 | 035 | 362747 | 148 | 48342.68 0
Coo -10 0519 | 035 | 399642 | 1.63 | 48342.68
20 0519 | 035 | 343.042 | 140 | 48342.68 0
+20 0519 | 035 | 373.027 | 1.52 | 48342.68
+10 0301 | 0604 | 245501 | 1.00 | 50310.74 4.07
Cro -10 0519 | 035 | 347988 | 142 | 48342.68
20 0519 | 035 | 340470 | 1.39 | 48342.68 0
420 0301 | 0603 | 24544 | 1.00 | 5030636 4.06
+10 0519 | 035 | 361532 | 147 | 48342.68 0
Cao -10 0519 | 035 | 401799 | 1.64 | 48342.68 0
20 0318 | 035 | 24544 | 1.00 | 50159.75 3.76
420 0519 | 035 | 450651 | 1.84 | 48342.68 0
+10 0519 | 035 | 421457 | 1.72 | 50141.64 372
Coo -10 0343 | 0594 | 24544 | 1.00 | 48342.68 0
20 0664 | 035 | 548023 | 223 | 5014247 372
420 0519 | 0350 | 339393 | 1.38 | 49207.61 1.79
+10 0325 | 0560 | 24544 | 1.00 | 50703.14 4.88
9o -10 0302 | 0602 | 24879 | 1.01 | 49673.19 2.75
20 0519 | 035 | 37437 | 1.53 | 4747774 -1.79

Table 4A shows the sensitivity of the cost parameters associated with the model. We see that the
average inventory cost reaches its upper bound $ 50703.14 with 4.88 % increment and takes its
lower bound $ 47037.93 with 2.7 % decrement. The order quantity and the production run time
lic between the respective intervals [245.44, 548.02] MT and [1.00, 2.23] months. Also, the
primal o cut lies in the interval [0.272, 0.664] whereas the dual B cut lies in the interval [0.350,
0.668] throughout the table.

108 International Research Journal of Basic and Applied Sciences = ISBN: 2455-6718 : RNI : WBENG/2016/76189 = Vol. 6= 2021



Table 4B: Sensitivity analysis of fuzzy deviation parameters (optimum o)

*
Parameter | % Change | o B Q* T*, 7% Z-2 x100%
z
+20 0.519 | 035 | 355896 | 1.45 | 48342.68 0
+10 0320 | 0.569 | 346.819 | 1.41 | 50141.64 3.72
Cro -10 0.519 | 0.35 | 401.798 | 1.64 | 48342.68 0
-20 0319 | 0.569 | 346.794 | 1.41 | 50142.47 3.72
+20 0320 | 0.569 | 346.811 | 1.41 | 50141.91 3.72
+10 0.320 | 0.569 | 346.811 | 1.41 | 50141.91 3.72
C20
-10 0.320 | 0.569 | 346.811 | 1.41 | 50141.91 3.72
-20 0.519 | 0.35 | 355.896 | 1.45 | 48342.68 0
+20 0.519 | 035 | 401.798 | 1.64 | 48342.68 0
+10 0.519 | 035 | 401.798 | 1.64 | 48342.68 0
C30
-10 0318 | 0.572 | 346.295 | 1.41 | 50158.73 3.76
-20 0.519 | 0.350 | 355.896 | 1.45 | 48342.68 0
+20 0.519 | 035 | 401.164 | 1.63 | 48342.68 0
+10 0.519 | 035 | 401.482 | 1.64 | 48342.68 0
Cao -10 0.519 | 0.35 | 402.114 | 1.64 | 48342.68 0
-20 0.309 | 0.588 | 245.44 | 1.00 | 50235.55 3.92
+20 0.635 | 035 | 457.689 | 1.86 | 47303.71 -2.15
+10 0.577 | 035 | 400.204 | 1.63 | 47827.96 -1.06
Cso -10 0.519 | 0.35 | 402.183 | 1.64 | 48342.68 0
-20 0.519 | 035 | 402.565 | 1.64 | 48342.68 0
+20 0.519 | 035 | 401.688 | 1.64 | 48342.68 0
+10 0.519 | 035 | 401.744 | 1.64 | 48342.68 0
Ceo -10 0.519 | 0.35 | 356.065 | 1.45 | 48342.68 0
-20 0.519 | 035 | 356.235 | 1.45 | 48342.68 0
+20 0.519 | 035 | 355501 | 1.45 | 48342.68 0
+10 0.519 | 035 | 355698 | 1.45 | 48342.68 0
Cro -10 0.519 | 0.35 | 356.093 | 1.45 | 48342.68 0
-20 0.519 | 035 | 401.925 | 1.64 | 48342.68 0
+20 0.519 | 035 | 355.619 | 1.45 | 48342.68 0
c +10 0.519 | 035 | 355758 | 1.45 | 48342.68 0
80 -10 0.519 | 035 | 356.034 | 1.45 | 48342.68 0
-20 0.569 | 0319 | 346.781 | 1.41 | 50142.90 3.72
+20 0.635 | 035 | 457.689 | 1.86 | 47303.71 -2.15
+10 0317 | 0.637 | 248.363 | 1.01 | 50165.41 3.77
Coo -10 0.519 | 0.35 | 402.183 | 1.64 | 48342.68 0
-20 0.519 | 035 | 402.565 | 1.64 | 48342.68 0
+20 0.519 | 0350 | 245.44 | 1.00 | 57146.28 18.21
+10 0.420 | 0.432 | 245.44 | 1.00 | 53634.74 10.95
o -10 0.268 | 0.679 | 277.55 | 1.13 | 46207.85 -4.42
-20 0228 | 0.797 | 32462 | 1.32 | 4216254 -12.78
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Table 4B shows the sensitivity of the deviation parameters associated with the model. We see
that the average inventory cost reaches its upper bound $ 57146.28 with 18.21 % increment and
takes its lower bound $ 42162 .54 with 12.78 % decrement. The order quantity and the production
run time lic between the respective intervals [245.44, 457.69] MT and [1.00, 1.86] months.
Also, the primal o cut lies in the interval [0.228, 0.635] whereas the dual B cut lies in the
interval [0.319, 0.797] throughout the table.

Table S: Variation of supply chain cost with rail distance in fuzzy approximate reasoning
L a* p* o* T,# Z*
500 | 0.519 | 0.35 | 394.092 | 1.606 | 48342.68

600 | 0.519 | 0.35 | 355896 | 1.45 | 48342.68
700 | 0.319 | 0.569 | 353.479 | 1.44 | 50138.80

Table 5 shows the variation of average inventory cost, order quantity, production run time and
the primal-dual cuts with respect to the variation of distance covered by the transportation
vehicles. We see that the average inventory cost is increasing and both the order quantity and
production run time are decreasing with respect to the increasing transportation distances.

5. Discussion

In this section we shall draw some graphs using numerical outcomes of the model stated in
tables 2 to 5.

Fig. 6: Change of order quantity due to variation of Fig. 7: Change of production run time due to
25, 8 and &y, variation of z, §, and &,
change in DELQ em==change in DEL20 change in Z0 change in DELO change in DEL20 .change in Z0
380 1.6
360 o )
g —7" £ —a
S 340 =14
c g /
% 320 E 13
E 300 % 1.2
5 280 211
260 2
240 — 09
-20 -10 10 20 -20 -10 10 20
Percent change in parameters Percent change in parameters

Fig. 6 and Fig. 7 show the variation of the order quantity and production run time due to the %
change of the parameters z, 5 and d,,. We see that 6, is less sensitive and z, §, are much
sensitive according to the order quantity curve and production run time curve. The order quantity
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takes maximum value at 375 MT for 20 % hike of 6 and takes minimum value at 245 MT for
10% decrease of both z, and 6, The production run time reaches its maximum at 1.55 months
for 20 % hike of 6, and takes minimum value at 1.00 months for 10% decrease of both z, and 5,

Fig.8: Changf: c?faverage supply chain Fig. 9: Variation of average SC cost with
cost due to variation of z,, 8, and 8, production run time in approximate fuzzy
reasoning method
change in DELO em====change in DEL20 change in Z0O
54000
58000
56000 : 52000
54000 50000
52000 -
7 S 48000
o 50000 " o
o
48000 \ \ 46000
46000
44000
44000 ;
42000 42000
-20 -10 10 20 1 101 113 132 138 141 145 153
Percent change in parameters Production run time

Fig. 8 shows the variation of the average supply chain cost due to the % change of the parameters
z,, 6, and 6,,. We see that z is much sensitive rather than 6, and 6, according to the cost curve.
The average supply chain cost becomes maximum ($ 57000) with 20% reduction of z, and
becomes minimum ($ 42000) with 20 % hike of z,. Fig. 9 gives the variation of average SC
cost with the variation of production run time. The cost curve takes V-shape with valley $42000
corresponding to 1.32 months production time and takes two peaks with $ 53000 and $ 50000
corresponding to 1.00 months and 1.41 months respectively.
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Fig. 10:Variation of Supply Chain cost under a-dual f—cuts solutions
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o cut solutions  =====Dual B cut solutions

Fig. 10 represents the variation of the average supply chain cost under primal a-dual B—cuts
solutions. We see that the average SC cost curve takes a parabolic view with respect to the dual
cut whereas it takes a zigzag view with respect to the primal cut. When the primal cut becomes
maximum with 0.95 then the average SC cost becomes minimum with $ 44500 and when the
dual cut becomes maximum with 0.95 then the average SC cost becomes maximum with $
51000.

Fig. 11: Variation of cost function due to o and

COoSsT
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Fig. 11 expresses a three-dimensional view of average SC cost under the effect of primal and
dual cuts. It is a surface like curve with concave nature. We see that the average SC cost becomes
minimum ($ 43500) with respect to the value of primal-dual cut (o, f) = (0.26, 0.60) and it
becomes maximum ($ 46500) with respect to the value of primal-dual cut (o, ) = (0.2, 0.95)
respectively.

6. Conclusion
In this study we have discussed a noble application of fuzzy approximate reasoning in the field
of inventory management problems. This article explores a new horizon on managerial decision
making utilizing the approximating fuzzy mathematical modelling. To do this, the concept of
possibility theory in approximating fuzzy membership function is incorporated. The concept of
negation (non-membership degree) is applied within approximated fuzzy membership degree.
Boosting the traditional approach of a-cuts of fuzzy sets, duality of a-cuts has been introduced
over a rectangular hyperbolic type convex set. The basic managerial insights include as follows:
a) More choices have come to get decision at any time because of the presence of dual
solution of the original objective function side by side.
b) Fuzzy reasoning solution approach gives nearly 8.5 % cost reduction on average with
respect to crisp optimal solution.
¢) Reducing length of cycle time, the DMs will have enough time to think further for any
kind of strategic change.
d) Applving fuzzy reasoning it is possible to reduce individual differences of selecting
particular fuzzy number and hence its global acceptance even less qualified DM also.
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