
 
 

UNIT – 5 : Advanced Behavioral Modeling 
 
 
 
Syllabus :Events and signals,statemachines,processes and Threads ,time and space chart 
diagrams, Component, Deployment, Component Diagrams and Deployment diagrams 
 

 

Events and Signals 

 

Terms and Concepts 

 

An event is the specification of a significant occurrence that has a location in time and space. In the 
context of state machines, an event is an occurrence of a stimulus that can trigger a state transition. A 

signal is a kind of event that represents the specification of an asynchronous stimulus communicated 

between instances. 
 
Kinds of Events 

 

Events may be external or internal. External events are those that pass between the system and its actors. 
For example, the pushing of a button and an interrupt from a collision sensor are both examples of 
external events. Internal events are those that pass among the objects that live inside the system. An 
overflow exception is an example of an internal event. 
 
In the UML, you can model four kinds of events: signals, calls, the passing of time, and a change in state. 
 
Signals 

 

A signal represents a named object that is dispatched (thrown) asynchronously by one object and then 

received (caught) by another. Exceptions are supported by most contemporary programming languages 

and are the most common kind of internal signal that you will need to model. 

 
Signals have a lot in common with plain classes. For example, signals may have instances, although you 
don't generally need to model them explicitly. Signals may also be involved in generalization 
relationships, permitting you to model hierarchies of events, some of which are general (for example, the 
signal NetworkFailure) and some of which are specific (for example, a specialization of NetworkFailure 
called WarehouseServerFailure). Also as for classes, signals may have attributes and operations. 
 
A signal may be sent as the action of a state transition in a state machine or the sending of a message in an 
interaction. The execution of an operation can also send signals. In fact, when you model a class or an 
interface, an important part of specifying the behavior of that element is specifying the signals that its 
operations can send. In the UML, you model the relationship between an operation and the events that it 
can send by using a dependency relationship, stereotyped as send. 
 

Figure Signals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Call Events 
 
Just as a signal event represents the occurrence of a signal, a call event represents the dispatch of an 
 
operation. In both cases, the event may trigger a state transition in a state machine.Whereas a signal is an 
 
asynchronous event, a call event is, in general, synchronous. This means that when an object invokes an 
 
operation on another object that has a state machine, control passes from the sender to the receiver, the 
 
transition is triggered by the event, the operation is completed, the receiver transitions to a new state, and 
 
control returns to the sender. 

 

Figure Call Events 
 
 
 
 
 
 
 
 
 
 
 

 

Time and Change Events 
 
A time event is an event that represents the passage of time. As Figure shows, in the UML you model a 
 
time event by using the keyword after followed by some expression that evaluates to a period of time. 
Such expressions can be simple (for example, after 2 seconds) or complex (for example, after 1 ms since 
exiting Idle). Unless you specify it explicitly, the starting time of such an expression is the time since 

entering the current state. 
 

Figure  Time and Change Events 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A change event is an event that represents a change in state or the satisfaction of some condition. As 
Figure shows, in the UML you model a change event by using the keywordwhen followed by some 
Boolean expression. You can use such expressions to mark an absolutetime (such as when time = 11:59) 
or for the continuous test of an expression (for example, when altitude < 1000). 
 
Sending and Receiving Events 

 
Signal events and call events involve at least two objects: the object that sends the signal or invokes the 
operation, and the object to which the event is directed. Because signals are asynchronous, and because 
asynchronous calls are themselves signals, the semantics of events interact with the semantics of active 

 

 



objects and passive objects. 
 

 

Any instance of any class can send a signal to or invoke an operation of a receiving object. When an object 

sends a signal, the sender dispatches the signal and then continues along its flow of control, not waiting for 

any return from the receiver. For example, if an actor interacting with an ATM system sends the signal 

pushButton, the actor may continue along its way independent of the system to which the signal was sent. 

In contrast, when an object calls an operation, the sender dispatches the operation and then waits for the 

receiver. For example, in a trading system, an instance of the class Trader might invoke the operation 

confirmTransaction on some instance of the class Trade, thereby affecting the state of the Trade object. 

If this is a synchronous call, the Trader object will wait until the operation is finished. 

 

Any instance of any class can receive a call event or a signal. If this is a synchronous call event, then the 
sender and the receiver are in a rendezvous for the duration of the operation. This means that the flow of 
control of the sender is put in lock step with the flow of control of the receiver until the activity of the 

operation is carried out. If this is a signal, then the sender and receiver do not rendezvous: the sender 
dispatches the signal but does not wait for a response from the receiver. In either case, this event may be 
lost (if no response to the event is specified), it may trigger the receiver's state machine (if there is one), 
or it may just invoke a normal method call. 

 
In the UML, you model the call events that an object may receive as operations on the class of the object. 

In the UML, you model the named signals that an object may receive by naming them in an extra 
compartment of the class, as shown in Figure . 
 

Figure Signals and Active Classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Common Modeling Techniques 
 

Modeling a Family of Signals 

 

In most event-driven systems, signal events are hierarchical. For example, an autonomous robot might 
distinguish between external signals, such as a Collision, and internal ones, such as a HardwareFault. 
External and internal signals need not be disjoint, however. Even within thesetwo broad classifications, 
you might find specializations. For example, HardwareFault signals might be further specialized as 
BatteryFault and MovementFault. Even these might be further specialized, such as MotorStall, a kind 

 



of MovementFault. 
 
 

By modeling hierarchies of signals in this manner, you can specify polymorphic events. For example, 

consider a state machine with a transition triggered only by the receipt of a MotorStall. As a leaf 

signal in this hierarchy, the transition can be triggered only by thatsignal, so it is not polymorphic. In 

contrast, suppose you modeled the state machine with a transition triggered by the receipt of a 

HardwareFault. In this case, the transition is polymorphic and can be triggered by a HardwareFault 

or any of its specializations, includingBatteryFault, MovementFault, andMotorStall. 
 
To model a family of signals, 

 
· Consider all the different kinds of signals to which a given set of active objects 

may respond. 

 
· Look for the common kinds of signals and place them in a generalization/specialization 

hierarchy using inheritance. Elevate more general ones and lower more specialized ones. 

 
· Look for the opportunity for polymorphism in the state machines of these active objects. 

Where you find polymorphism, adjust the hierarchy as necessary by introducing intermediate 
abstract signals. 

 
Figure models a family of signals that may be handled by an autonomous robot. Note thatthe root signal 
(RobotSignal) is abstract, which means that there may be no direct instances. This signal has two 
immediate concrete specializations (Collision and HardwareFault), one of which (HardwareFault) is 
further specialized. Note that the Collision signal has one parameter. 
 

Figure Modeling Families of Signals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling Exceptions 
 

 

An important part of visualizing, specifying, and documenting the behavior of a class or an interface is 

specifying the exceptions that its operations can raise. If you are handed a class or an interface, the 

operations you can invoke will be clear, but the exceptions that each operation may raise will not be clear 
unless you model them explicitly. 

 



 
In the UML, exceptions are kinds of signals, which you model as stereotyped classes. Exceptions may be 
attached to specification operations. Modeling exceptions is somewhat the inverse of modeling a general 

family of signals. You model a family of signals primarily to specify the kinds of signals an active object 
may receive; you model exceptions primarily to specify the kinds of exceptions that an object may throw 
through its operations. 
 
 
 

To model exceptions, 

 
· For each class and interface, and for each operation of such elements, consider 

the exceptional conditions that may be raised. 

 
· Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, and 

introduce intermediate exceptions, as necessary. 
 

· For each operation, specify the exceptions that it may raise. You can do so explicitly (by 
showing send dependencies from an operation to its exceptions) or you can put this in the 
operation's specification. 

 
Figure models a hierarchy of exceptions that may be raised by a standard library ofcontainer classes, such 
as the template class Set. This hierarchy is headed by the abstract signal Exception and includes three 
specialized exceptions: Duplicate, Overflow, and Underflow. As shown, the add operation raises 
Duplicate and Overflow exceptions, andthe remove operation raises only the Underflow exception. 
Alternatively, you could have put these dependencies in the background by naming them in each 
operation's specification. Either way, by knowing which exceptions each operation may send, you can 
create clients that use the Set class correctly. 

 

Figure Modeling Exceptions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 

State Machines 
 

Terms and Concepts 

 

A state machine is a behavior that specifies the sequences of states an object goes through during its 

lifetime in response to events, together with its responses to those events. A state is a condition or 

situation during the life of an object during which it satisfies some condition, performs some activity, or 

waits for some event. An event is the specification of a significant occurrence that has a location in time 

and space. In the context of state machines, an event is an occurrence of a stimulus that can trigger a state 

transition. A transition is a relationship between two states indicating that an object in the first state will 

perform certain actions and enter the second state when a specified event occurs and specified conditions 

are satisfied. An activity is ongoing nonatomic execution within a state machine. An action is an 

executable atomic computation that results in a change in state of the model or the return of a value. 

Graphically, a state is rendered as a rectangle with rounded corners. A transition is rendered as a solid 

directed line. 
 
Context 

 
Every object has a lifetime. On creation, an object is born; on destruction, an object ceases to exist. In 
between, an object may act on other objects (by sending them messages), as well as be acted on (by being 
the target of a message). In many cases, these messages will be simple, synchronous operation calls. For 
example, an instance of the class Customer might invoke the operation getAccountBalance on an 
instance of the class BankAccount. Objects such as these don't need a state machine to specify their 
behavior because their current behavior does not depend on their past. 

 

In other kinds of systems, you'll encounter objects that must respond to signals, which are asynchronous 

stimuli communicated between instances. For example, a cellular phone must respond to random phone 
calls (from other phones), keypad events (from the customer initiating a phone call), and to events from 
the network (when the phone moves from one call to another). Similarly, you'll encounter objects whose 
current behavior depends on their past behavior. For example, the behavior of an air-to-air missile 

guidance system will depend on its current state, such as NotFlying (it's not a good idea to launch a 
missile while it's attached to an aircraft that's still sitting on the ground) or Searching (you shouldn't arm 
the missile until you have a good idea what it's going to hit). 

 

The behavior of objects that must respond to asynchronous stimulus or whose current behavior depends 
on their past is best specified by using a state machine. This encompasses instances of classes that can 
receive signals, including many active objects. In fact, an object that receives a signal but has no state 
machine will simply ignore that signal. You'll also use state machines to model the behavior of entire 
systems, especially reactive systems, which must respond to signals from actors outside the system. 
 
States 

 

A state is a condition or situation during the life of an object during which it satisfies some condition, 

performs some activity, or waits for some event. An object remains in a state for a finite amount of time. 

For example, a Heater in a home might be in any of four states: Idle (waiting for a command to start 

heating the house), Activating (its gas is on, but it's waiting to come up to temperature), Active (its gas 

and blower are both on), and ShuttingDown (its gas is off but its blower is on, flushing residual heat 

from the system). 

 

When an object's state machine is in a given state, the object is said to be in that state. 
For example, an instance of Heater might be Idle or perhaps ShuttingDown. 
 

 



 
 

 

Astate has several parts. 
 

1. Name A textual string that distinguishes the state from other states; a state may be 

  anonymous, meaning that it has no name 
   

2. Entry/exit Actions executed on entering and exiting the state, respectively 

actions  
   

3. Internal Transitions that are handled without causing a change in state 

transitions  
   

4. Substates The nested structure of a state, involving disjoint (sequentially active) or 

  concurrent (concurrently active) substates 
   

5. Deferred A list of events that are not handled in that state but, rather, are postponed and 

events queued for handling by the object in another state 
   

 
 
 
 
 
 
As Figure  shows, you represent a state as a rectangle with rounded corners. 

 
Figure States 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Initial and Final States 

 
As the figure shows, there are two special states that may be defined for an object's state machine. 
First, there's the initial state, which indicates the default starting place for the state machine or 
substate. An initial state is represented as a filled black circle. Second, there's the final state, which 
indicates that the execution of the state machine or the enclosing state has been completed. A final 
state is represented as a filled black circle surrounded by an unfilled circle. 

 
Note 

 
Initial and final states are really pseudostates. Neither may have the usual parts of a normal 

state, except for a name. A transition from an initial state to a final state may have the full 

complement of features, including a guard condition and action (but not a trigger event). 
 
 

Transitions 
 
A transition is a relationship between two states indicating that an object in the first state will perform 

 



 
certain actions and enter the second state when a specified event occurs and specified conditions are 
satisfied. On such a change of state, the transition is said to fire. Until the transition fires, the object is 
said to be in the source state; after it fires, it is said to be in the target state. For example, a Heater might 
transition from the Idle to the Activating state when an event such as tooCold (with the parameter 
desiredTemp) occurs. 

 

As Figure shows, a transition is rendered as a solid directed line from the source to the target state. 
A self-transition is a transition whose source and target states are the same. 
 

Figure Transitions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Event Trigger 

 

An event is the specification of a significant occurrence that has a location in time and space. In the 

context of state machines, an event is an occurrence of a stimulus that can trigger a state transition. As 

shown in the previous figure, events may include signals, calls, the passing of time,or a change in state. A 

signal or a call may have parameters whose values are available to the transition, including expressions for 

the guard condition and action. 

 
It is also possible to have a triggerless transition, represented by a transition with no event trigger. A triggerless 

transition• also called a completion transition• is triggered implicitly when its source state has 

completed its activity. 
 
Guard 

 

As the previous figure shows, a guard condition is rendered as a Boolean expression enclosed in square 

brackets and placed after the trigger event. A guard condition is evaluated only after the trigger event for 

its transition occurs. Therefore, it's possible to have multiple transitions from the same source state and 

with the same event trigger, as long as those conditions don't overlap. 

 

A guard condition is evaluated just once for each transition at the time the event occurs, but it may be 
evaluated again if the transition is retriggered. Within the Boolean expression, you can include conditions 
about the state of an object (for example, the expression aHeater in Idle, which evaluates True if the 
Heater object is currently in the Idle state). 
 
Action 

 

 



 
An action is an executable atomic computation. Actions may include operation calls (to the object that 
owns the state machine, as well as to other visible objects), the creation or destruction of another object, 
 
or the sending of a signal to an object. As the previous figure shows, there's a special notation for sending 
a signal• the signal name is prefixed with the keyword send as a visual cue. 
 
Activities are discussed in a later section of this chapter; dependencies are discussed in An action is 
atomic, meaning that it cannot be interrupted by an event and therefore runs to completion. This is in 
contrast to an activity, which may be interrupted by other events. 

 

Advanced States and Transitions 

 

You can model a wide variety of behavior using only the basic features of states and transitions in the 
UML. Using these features, you'll end up with flat state machines, which means that your behavioral 
models will consist of nothing more than arcs (transitions) and vertices (states). 
 
However, the UML's state machines have a number of advanced features that help you to manage complex 
behavioral models. These features often reduce the number of states and transitions you'll need, and they 
codify a number of common and somewhat complex idioms you'd otherwise encounter using flat state 
machines. Some of these advanced features include entry and exit actions, internal transitions, activities, 

and deferred events. 
 
Entry and Exit Actions 

 

In a number of modeling situations, you'll want to dispatch the same action whenever you enter a state, no 
matter which transition led you there. Similarly, when you leave a state, you'll want to dispatch the same 
action no matter which transition led you away. For example, in a missile guidance system, you might 

want to explicitly announce the system is onTrack whenever it's in the Tracking state, and offTrack 
whenever it's out of the state. Using flat state machines, you can achieve this effect by putting those 
actions on every entering and exiting transition, as appropriate. However, that's somewhat error prone; you 
have to remember to add these actions every time you add a new transition. Furthermore, modifying this 

action means that you have to touch every neighboring transition. 

 

As Figure shows, the UML provides a shorthand for this idiom. In the symbol for the state, you can 

include an entry action (marked by the keyword event entry) and an exit action (marked by the keyword 

event exit), together with an appropriate action. Whenever you enter the state, its entry action is 

dispatched; whenever you leave the state, its exit action is dispatched. 
 

Figure  Advanced States and Transitions 
 
 
 
 
 
 
 
 
 
 
 
 

 

Internal Transitions 

 
Once inside a state, you'll encounter events you'll want to handle without leaving the state. These are 
called internal transitions, and they are subtly different from self-transitions. In a self-transition, such as 
you see in Figure , an event triggers the transition, you leave the state,an action (if any) is dispatched, and 
then you reenter the same state. Because this transition exits and then enters the state, a self-transition 
dispatches the state's exit action, then it dispatches the action of the self-transition, and finally, it 



 
dispatches the state's entry action. However, suppose you want to handle the event but don't want to fire 
the state's entry and exit actions. Using flat state machines, you can achieve that effect, but you have to be 
diligent about remembering which of a state's transitions have these entry and exit actions and which do 
not. 

 
As Figure shows, the UML provides a shorthand for this idiom, as well (for example, for the event 
newTarget). In the symbol for the state, you can include an internal transition (marked by an event). 
Whenever you are in the state and that event is triggered, the corresponding action is dispatched without 
leaving and then reentering the state. Therefore, the event is handled without dispatching the state's exit 
and then entry actions. 

 

Activities 

 
When an object is in a state, it generally sits idle, waiting for an event to occur. Sometimes, however, you 
may wish to model an ongoing activity. While in a state, the object does some work that will continue 
until it is interrupted by an event. For example, if an object is in the Tracking state, it might followTarget 
as long as it is in that state. As Figure shows, in the UML, you use the special do transition to specify the 
 
work that's to be done inside a state after the entry action is dispatched. The activity of a do transition might 

name another state machine (such as followTarget). You can also specify a sequence of actions•for  
example, do / op1(a); op2(b);op3(c). Actions are never interruptible, but sequences of actions are. In 
between each action (separated by the semicolon), events may be handled by the enclosing state, which 
results in transitioning out of the state. 
 
Deferred Events 

 

Consider a state such as Tracking. As illustrated in Figure, suppose there's only one transition leading 
out of this state, triggered by the event contact. While in the state Tracking, any events other than 
contact and other than those handled by its substates willbe lost. That means that the event may occur, 
but it will be postponed and no action will result because of the presence of that event. In every 
modeling situation, you'll want to recognize some events and ignore others. You include those you 
want to recognize as the event triggers of transitions; those you want to ignore you just leave out. 
However, in some modeling situations, you'll want to recognize some events but postpone a response to 
them until later. For example, while in the Tracking state, you may want to postpone a response to 
signals such as selfTest,perhaps sent by some maintenanceagent in the system. 
 
In the UML, you can specify this behavior by using deferred events. A deferred event is a list of events 
whose occurrence in the state is postponed until a state in which the listed events are not deferred becomes 
active, at which time they occur and may trigger transitions as if they had just occurred. As you can see in 
the previous figure, you can specify a deferred event by listing the event with the special action defer. In 
this example, selfTest events may happen while in the Tracking state, but they are held until the object is 
in the Engaging state, at which time itappears as if they just occurred. 
 
Substates 

 
These advanced features of states and transitions solve a number of common state machine modeling problems. 

However, there's one more feature of the UML's state machines• substates• that does even more  
to help you simplify the modeling of complex behaviors. A substate is a state that's nested inside another 
one. For example, a Heater might be in the Heating state, but also while in the Heating state, there might 
be a nested state called Activating. In this case, it's proper to say that the object is both Heating and  
Activating. 
 
A simple state is a state that has no substructure. A state that has substates• that is, nested states• is 

called a composite state. A composite state may contain either concurrent (orthogonal) or sequential 

(disjoint) substates. In the UML, you render a composite state just as you do a simple state, but with an 

option al graphic compartment that shows a nested state machine. Substates may be nested to any level. 
 
 
 



 
 

Sequential Substates 

 

Consider the problem of modeling the behavior of an ATM. There are three basic states in which this 
system might be: Idle (waiting for customer interaction), Active (handling a customer's transaction), and 

Maintenance (perhaps having its cash store replenished). While Active, the behavior of the ATM follows 

a simple path: Validate the customer, select a transaction, process the transaction, and then print a receipt. 
After printing, the ATM returns to the Idle state. You might represent these stages of behavior as the 
states Validating, Selecting,Processing, and Printing. It would even be desirable to let the customer 
select andprocess multiple transactions after Validating the account and before Printing a final receipt. 

 
The problem here is that, at any stage in this behavior, the customer might decide to cancel the transaction, 

returning the ATM to its Idle state. Using flat state machines, you can achieve that effect, but it's quite 

messy. Because the customer might cancel the transaction at any point, you'd have to include a suitable 

transition from every state in the Active sequence. That's messy because it's easy to forget to include these 

transitions in all the right places, and many suchinterrupting events means you end up with a multitude of 

transitions zeroing in on the same target state from various sources, but with the same event trigger, guard 

condition, and action. 
 
Using sequential substates, there's a simpler way to model this problem, as Figure shows.Here, the Active 

state has a substructure, containing the substatesValidating,Selecting, Processing, and Printing. The 
state of the ATM changes from Idle toActive when the customer enters a credit card in the machine. On 
entering the Active state,the entry action readCard is performed. Starting with the initial state of the 
substructure, control passes to the Validating state, then to the Selecting state, and then to the Processing 

state. After Processing, control may return to Selecting (if the customer has selected another transaction) 
or it may move on to Printing. After Printing, there's a triggerless transition back to the Idle state. 
Notice that the Active state has an exit action, which ejects the customer's credit card. 
 
 

 

Figure SequentialSubstates 
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Notice also the transition from the Active state to the Idle state, triggered by the event cancel. In any 
substate of Active, the customer might cancel the transaction, and that returnsthe ATM to the Idle state 
(but only after ejecting the customer's credit card, which is the exit action dispatched on leaving the Active 
state, no matter what caused a transition out of that state). Without substates, you'd need a transition 
triggered by cancel on every substructure state. 
 
Substates such as Validating and Processing are called sequential, or disjoint, substates. Given a set of 
disjoint substates in the context of an enclosing composite state, the object is said to be in the composite 
state and in only one of those substates (or the final state) at a time. Therefore, sequential substates 
partition the state space of the composite state into disjoint states. 

 

From a source outside an enclosing composite state, a transition may target the composite state or it may 
target a substate. If its target is the composite state, the nested state machine must include an initial state, 
to which control passes after entering the composite state and after dispatching its entry action (if any). If 
its target is the nested state, control passes to the nested state, after dispatching the entry action (if any) of 
the composite state and then the entry action (if any) of the substate. 
 
A transition leading out of a composite state may have as its source the composite state or a substate. In 
either case, control first leaves the nested state (and its exit action, if any, is dispatched), then it leaves the 
composite state (and its exit action, if any, is dispatched). A transition whose source is the composite state 
essentially cuts short (interrupts) the activity of the nested state machine. 
 
 
 
 
 

History States 

 
A state machine describes the dynamic aspects of an object whose current behavior depends on its past. A 
state machine in effect specifies the legal ordering of states an object may go through during its lifetime. 
 
Unless otherwise specified, when a transition enters a composite state, the action of the nested state 
machine starts over again at its initial state (unless, of course, the transition targets a substate directly). 
However, there are times you'd like to model an object so that it remembers the last substate that was 
active prior to leaving the composite state. For example, in modeling the behavior of an agent that does an 
unattended backup of computers across a network, you'd like it to remember where it was in the process if 

it ever gets interrupted by, for example, a query from the operator. 
 
Using flat state machines, you can model this, but it's messy. For each sequential substate, you'd need to 

have its exit action post a value to some variable local to the composite state. Then the initial state to this 

composite state would need a transition to every substate with a guard condition, querying the variable. In 

this way, leaving the composite state would cause the last substate to be remembered; entering the 

composite state would transition to the proper substate. That's messy because it requires you to remember 

to touch every substate and to set an appropriate exit action. It leaves you with a multitude of transitions 

fanning out from the same initial state to different target substates with very similar (but different) guard 

conditions. 
 
In the UML, a simpler way to model this idiom is by using history states. A history state allows a 
composite state that contains sequential substates to remember the last substate that was active in it prior 
to the transition from the composite state. As Figure shows, you represent ashallow history state as a 
small circle containing the symbol H. 
 
 



 
 

 

Figure  History State 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If you want a transition to activate the last substate, you show a transition from outside the composite state 
directly to the history state. The first time you enter a composite state, it has no history. This is the 
meaning of the single transition from the history state to a sequential substate such as Collecting.The 
target of this transition specifies the initial state of the nested statemachine the first time it is entered. 
Continuing, suppose that while in the BackingUp state and the Copying state, the query event is posted. 
Control leaves Copying and BackingUp (dispatching their exit actions as necessary) and returns to the 
Command state. When the action of Command completes, the triggerless transition returns to the history 
 
state of the composite state BackingUp. This time, because there is a history to the nested state machine, 
control passes back to the Copying state• thus bypassing the Collecting state• because Copying was the 
last substate active prior to the transition from BackingUp. 

 

In either case, if a nested state machine reaches a final state, it loses its stored history and behaves 
as if it had not yet been entered for the first time. 
 
Concurrent Substates 

 

Sequential substates are the most common kind of nested state machine you'll encounter. In certain 
modeling situations, however, you'll want to specify concurrent substates. These substates let you specify 
two or more state machines that execute in parallel in the context of the enclosing object. 
 
For example, Figure shows an expansion of the Maintenance state from Figure .Maintenance is 
decomposed into two concurrent substates, Testing and Commanding, shown by nesting them in the 
Maintenance state but separating them from one another with a dashed line. Each of these concurrent 
 



substates  is  further  decomposed  into  sequential  substates.  When  control  passes  from  the  Idle  to  the  
Maintenance state, control then forks to two concurrent flows• the enclosing object will be in the 

Testing state and the Commanding state. Furthermore, while in the Commanding state, the enclosing 

object will be in the Waiting or the Command state. 
 

Figure Concurrent Substates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Execution of these two concurrent substates continues in parallel. Eventually, each nested state 
machine reaches its final state. If one concurrent substate reaches its final state before the other, control 
in that substate waits at its final state. When both nested state machines reach their final state, control 
from the two concurrent substates joins back into one flow. 
 
Whenever there's a transition to a composite state decomposed into concurrent substates, control forks 
into as many concurrent flows as there are concurrent substates. Similarly, whenever there's a transition 
from a composite substate decomposed into concurrent substates, control joins back into one flow. This 
holds true in all cases. If all concurrent substates reach their final state, or if there is an explicit transition 
out of the enclosing composite state, control joins back into one flow. 
 
Common Modeling Techniques 
 

Modeling the Lifetime of an Object 
 
The most common purpose for which you'll use state machines is to model the lifetime of an object, 
especially instances of classes, use cases, and the system as a whole. Whereas interactions model the 
behavior of a society of objects working together, a state machine models the behavior of a single object 
over its lifetime, such as you'll find with user interfaces, controllers, and devices. 
 
When you model the lifetime of an object, you essentially specify three things: the events to which the 
object can respond, the response to those events, and the impact of the past on current behavior. Modeling 
the lifetime of an object also involves deciding on the order in which the object can meaningfully respond 
to events, starting at the time of the object's creation and continuing until its destruction. 

 
 
 
 



To model the lifetime of an object, 
 
 

· Set the context for the state machine, whether it is a class, a use case, or the system as a whole. 
 

1. If the context is a class or a use case, collect the neighboring classes, including any 
parents of the class and any classes reachable by associations or dependences. These 

neighbors are candidate targets for actions and are candidates for including in guard 
conditions. 

 
2. if the context is the system as a whole, narrow your focus to one behavior of the system. 

Theoretically, every object in the system may be a participant in a model of the system's 
lifetime, and except for the most trivial systems, a complete model would be intractable. 

 
· Establish the initial and final states for the object. To guide the rest of your model, possibly  

state the pre- and postconditions of the initial and final states, respectively. 
 

· Decide on the events to which this object may respond. If already specified, you'll find these 
in the object's interfaces; if not already specified, you'll have to consider which objects may 
interact with the object in your context, and then which events they may possibly dispatch. 

 
· Starting from the initial state to the final state, lay out the top-level states the object may be 

in. Connect these states with transitions triggered by the appropriate events. Continue by 
adding actions to these transitions. 

 
· Identify any entry or exit actions (especially if you find that the idiom they cover is used in 

the state machine). 
 

· Expand these states as necessary by using substates. 

 
· Check that all events mentioned in the state machine match events expected by the interface of 

the object. Similarly, check that all events expected by the interface of the object are handled 
by the state machine. Finally, look to places where you explicitly want to ignore events. 

 
· Check that all actions mentioned in the state machine are sustained by the relationships, methods, 

and operations of the enclosing object. 
 

· Trace through the state machine, either manually or by using tools, to check it against expected 
sequences of events and their responses. Be especially diligent in looking for unreachable 
states and states in which the machine may get stuck. 

 
· After rearranging your state machine, check it against expected sequences again to 

ensure that you have not changed the object's semantics. 
 
For example, Figure shows the state machine for the controller in a home security system,which 
is responsible for monitoring various sensors around the perimeter of the house.  

Figure Modeling the Lifetime of An Object 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
In the lifetime of this controller class, there are four main states: Initializing(the controller isstarting up), 
Idle (the controller is ready and waiting for alarms or commands from the user), Command (the 

controller is processing commands from the user), and Active (the controller isprocessing an alarm 
condition). When the controller object is first created, it moves first to the Initializing state and then 
unconditionally to theIdlestate. The details of these two statesare not shown, other than the self-
transition with the time event in the Idle state. This kind of time event is common in embedded systems, 
which often have a heartbeat timer that causes a periodic check of the system's health. 

 
Control passes from the Idle state to the Active state on receipt of an alarm event (which includes the 
parameter s, identifying the sensor that was tripped). On entering the Active state, setAlarmis dispatched 
as the entry action, and control then passes first to the Checking state(validating the alarm), then to the 
Calling state (calling the alarm company to register the alarm), and finally to the Waiting state. The 

Active and Waiting states are exited only upon clearing the alarm, or by the user signaling the controller 

for attention, presumably to issuea command. 
 
Notice that there is no final state. That, too, is common in embedded systems, which are intended to run 
continuously. 
 
Processes and thread 

 

Terms and Concepts 

 

An active object is an object that owns a process or thread and can initiate control activity. An active 

class is a class whose instances are active objects. A process is a heavyweight flow thatcan execute 

concurrently with other processes. A thread is a lightweight flow that can execute concurrently with 

other threads within the same process. Graphically, an active class is rendered as a rectangle with thick 

lines. Processes and threads are rendered as stereotyped active classes (and also appear as sequences in 

interaction diagrams). 
 
Flow of Control 

 

In a purely sequential system, there is one flow of control. This means that one thing, and one thing 

only, can take place at a time. When a sequential program starts, control is rooted at the beginning of 

the program and operations are dispatched one after another. Even if there are concurrent things 

happening among the actors outside the system, a sequential program will process only one event at a 

time, queuing or discarding any concurrent external events.This is why it's called a flow of control. If 

you trace the execution of a sequential program, you'll see the locus of execution flow from one 

statement to another, in sequential order. You might see actions that branch, loop, and jump about, 

and if there is any recursion or iteration, you see the flow circle back on itself. Nonetheless, in a 

sequential system, there would be a single flow of execution. 
 
In a concurrent system, there is more than one flow of control• that is, more than one thing can 

take place at a time. In a concurrent system, there are multiple simultaneous flows of control, each 

rooted at the head of an independent process or a thread. If you take a snapshot of a concurrent system 

while it's running, you'll logically see multiple loci of execution. 

 
In the UML, you use an active class to represent a process or thread that is the root of an 
independent flow of control and that is concurrent with all peer flows of control. 

 

Classes and Events 
 

 
Active classes are just classes, albeit ones with a very special property. An active class represents 

an independent flow of control, whereas a plain class embodies no such flow. In contrast to active 
classes, plain classes are implicitly called passive because they cannot independently initiate 

control activity. 

 



 
You use active classes to model common families of processes or threads. In technical terms, this means that 

an active object• an instance of an active class• reifies (is a manifestation of) a process or thread. By  
modeling concurrent systems with active objects, you give a name to each independent flow of control. 

When an active object is created, the associated flow of control is started; when the active object is 

destroyed, the associated flow of control is terminated. 
 
Active classes share the same properties as all other classes. Active classes may have instances. Active 

classes may have attributes and operations. Active classes may participate in dependency, generalization, 

and association (including aggregation) relationships. Active classes may use any of the UML's 

extensibility mechanisms, including stereotypes, tagged values, and constraints. Active classes may be 

the realization of interfaces. Active classes may be realized by collaborations, and the behavior of an 

active class may be specified by using state machines. 
 
 
In your diagrams, active objects may appear wherever passive objects appear. You can model the 

collaboration of active and passive objects by using interaction diagrams (including sequence and 

collaboration diagrams). An active object may appear as the target of an event in a state machine. 

 
Speaking of state machines, both passive and active objects may send and receive signal events and 
call events. 
 
Standard Elements 
 

 
All of the UML's extensibility mechanisms apply to active classes. Most often, you'll use tagged values 
to extend active class properties, such as specifying the scheduling policy of the active class. 

 

The UML defines two standard stereotypes that apply to active classes. 
 
1. Specifies a heavyweight flow that can execute concurrently with other processes process 

 
2. threadSpecifies a lightweight flow that can execute concurrently with other threads withinthe 

same process 

 

The distinction between a process and a thread arises from the two different ways a flow of 

control may be managed by the operating system of the node on which the object resides. 

 
A process is heavyweight, which means that it is a thing known to the operating system itself and runs in 

an independent address space. Under most operating systems, such as Windows and Unix, each program 

runs as a process in its own address space. In general, all processes on a node are peers of one another, 

contending for all the same resources accessible on the node. Processes are never nested inside one 

another. If the node has multiple processors, then true concurrency on that node is possible. If the node 

has only one processor, there is only the illusion of true concurrency, carried out by the underlying 

operating system. 
 
A thread is lightweight. It may be known to the operating system itself. More often, it is hidden inside a 
heavier-weight process and runs inside the address space of the enclosing process. In Java, for example, a 
thread is a child of the class Thread. All the threads that live in the context of a process are peers of one 
another, contending for the same resources accessible inside the process. Threads are never nested inside 

one another. In general, there is only the illusion of true concurrency among threads because it is 
processes, not threads, that are scheduled by a node's operating system. 

 
 
 
 
 
 



 
 

Communication 
 

 

When objects collaborate with one another, they interact by passing messages from one to the other. 

In a system with both active and passive objects, there are four possible combinations of interaction 
that you must consider. 
 
First, a message may be passed from one passive object to another. Assuming there is only one flow of 

control passing through these objects at a time, such an interaction is nothing more than the simple 
invocation of an operation. 
 
Second, a message may be passed from one active object to another. When that happens, you have 

interprocess communication, and there are two possible styles of communication. First, one active object 
might synchronously call an operation of another. That kind of communication has rendezvous 

semantics, which means that the caller calls the operation; the caller waits for the receiver to accept the 

call; the operation is invoked; a return object (if any) is passed back to the caller; and then the two 
continue on their independent paths. For the duration of the call, the two flows of controls are in lock 

step. Second, one active object might asynchronously send a signal or call an operation of another object. 

That kind of communication has mailbox semantics, which means that the caller sends the signal or calls 
the operation and then continues on its independent way. In the meantime, the receiver accepts the signal 

or call whenever it is ready (with intervening events or calls queued) and continues on its way after it is 
done. This is called a mailbox because the two objects are not synchronized; rather, one object drops off a 

message for the other. 

 
In the UML, you render a synchronous message as a full arrow and an asynchronous message as a 
half arrow, as in Figure . 
 

Figure Communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Third, a message may be passed from an active object to a passive object. A difficulty arises if more 
than one active object at a time passes their flow of control through one passive object. In that situation, 
you have to model the synchronization of these two flows very carefully, as discussed in the next 
section. 
 
Fourth, a message may be passed from a passive object to an active one. At first glance, this may seem 
illegal, but if you remember that every flow of control is rooted in some active object, you'll understand 
 



 
that a passive object passing a message to an active object has the same semantics as an active object 
passing a message to an active object. 
 
 

Synchronization 

 

Visualize for a moment the multiple flows of control that weave through a concurrent system. When a 

flow passes through an operation, we say that at a given moment, the locus of control is in the operation. 

If that operation is defined for some class, we can also say that at a given moment, the locus of control is 

in a specific instance of that class. You can have multiple flows of control in one operation (and therefore 

in one object), and you can have different flows of control in different operations (but still result in 

multiple flows of control in the one object). 
 
The problem arises when more than one flow of control is in one object at the same time. If you are not 

careful, anything more than one flow will interfere with another, corrupting the state of the object. This is 

the classical problem of mutual exclusion. A failure to deal with it properly yields all sorts of race 

conditions and interference that cause concurrent systems to fail in mysterious and unrepeatable ways. 
 
The key to solving this problem in object-oriented systems is by treating an object as a critical region. 
There are three alternatives to this approach, each of which involves attaching certain synchronization 
properties to the operations defined in a class. In the UML, you can model all three approaches. 
 
1. Callers must coordinate outside the object so that only one flow is in the object at a 

Sequential time. In the presence of multiple flows of control, the semantics and integrity of the object 

 cannot be guaranteed. 
  

2. Guarded The semantics and integrity of the object is guaranteed in the presence of multiple flows of 
 control by sequentializing all calls to all of the object's guarded operations. In effect, exactly 

 one operation at a time can be invoked on the object, reducing this to sequential semantics. 

 The semantics and integrity of the object is guaranteed in the presence of multiple flows 

3. of control by treating the operation as atomic. 

Concurrent  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Some programming languages support these constructs directly. Java, for example, has the synchronized property, 
which is equivalent to the UML's concurrent property. In everylanguage that supports concurrency, you can build 
support for all these properties by constructing them out of semaphores. 
 
As Figure shows, you can attach these properties to an operation, which you can render in the UML by using 
constraint notation. 
 

Figure Synchronization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note 

 
It is possible to model variations of these synchronization primitives by using constraints. For 
example, you might modify the concurrent property by allowing multiple simultaneous readers but 
only a single writer. 

 

Process Views 

 
Active objects play an important role in visualizing, specifying, constructing, and documenting a system's process 
view. The process view of a system encompasses the threads and processes that form the system's concurrency and 
synchronization mechanisms. This view primarily addresses the performance, scalability, and throughput of the 
 
system. With the UML, the static and dynamic aspects of this view are captured in the same kinds of diagrams as for the 

design view• that is, class diagrams, interaction diagrams, activity diagrams, and statechart diagrams, but 

with a focus on the active classes that represent these threads and processes. 
 
Common Modeling Techniques 
 
Modeling Multiple Flows of Control 
 
 
Building a system that encompasses multiple flows of control is hard. Not only do you have to decide how best to 

divide work across concurrent active objects, but once you've done that, you also have to devise the right mechanisms 

for communication and synchronization among your system's active and passive objects to ensure that they behave 

properly in the presence of these multiple flows. For that reason, it helps to visualize the way these flows interact with 

one another. You can do that in the UML by applying class diagrams (to capture their static semantics) and 

interaction diagrams (to capture their dynamic semantics) containing active classes and objects. 
 
To model multiple flows of control, 
 
 

· Identify the opportunities for concurrent action and reify each flow as an active class. Generalize 

common sets of active objects into an active class. Be careful not to over-engineer the process view of 

your system by introducing too much concurrency. 

 



 
· Consider a balanced distribution of responsibilities among these active classes, then examine the other 

active and passive classes with which each collaborates statically. Ensure that each active class is both 
tightly cohesive and loosely coupled relative to these neighboring classes and that each has the right set of 
attributes, operations, and signals. 

 
· Capture these static decisions in class diagrams, explicitly highlighting each active class. 

 

· Consider how each group of classes collaborates with one another dynamically. Capture those decisions in 

interaction diagrams. Explicitly show active objects as the root of such flows. Identify each related sequence 

by identifying it with the name of the active object. 

 
· Pay close attention to communication among active objects. Apply synchronous and asynchronous 

messaging, as appropriate. 

 
· Pay close attention to synchronization among these active objects and the passive objects with which they 

collaborate. Apply sequential, guarded, or concurrent operation semantics, as appropriate. 

 

For example, Figure shows part of the process view of a trading system. You'll find three objects that push 

information into the system concurrently: a StockTicker, an IndexWatcher, and aCNNNewsFeed(named s, i, and c, 

respectively). Two of these objects (sandi)communicate with their ownAnalystinstances (a1anda2). At least as far as 

thismodel goes, the Analyst can be designed under the simplifying assumption that only one flow of control will be 

active in its instances at a time. Both Analyst instances, however, communicate simultaneously with an 

AlertManager (named m). Therefore, m must be designed to preserve its semantics in the presence of multiple 

flows. Both m and c communicate simultaneously with t, a TradingManager. Each flow is given a sequence number 

that is distinguished by the flow of control that owns it. 
 

Figure Modeling Flows of Control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note 

 

Interaction diagrams such as these are useful in helping you to visualize where two flows of control 

might cross paths and, therefore, where you must pay particular attention to the problems of 

communication and synchronization. Tools are permitted to offer even more distinct visual cues, such as 

by coloring each flow in a distinct way. 
 
In diagrams such as this, it's also common to attach corresponding state machines, with orthogonal 
states showing the detailed behavior of each active object. 
 
 
 

 



Modeling Interprocess Communication 
 

 

As part of incorporating multiple flows of control in your system, you also have to consider the mechanisms by 
which objects that live in separate flows communicate with one another. Across threads (which live in the same 
address space), objects may communicate via signals or call events, the latter of which may exhibit either 
asynchronous or synchronous semantics. Across processes (which live in separate address spaces), you usually have 
to use different mechanisms. 
 
The problem of interprocess communication is compounded by the fact that, in distributed systems, processes 
 
may live on separate nodes. Classically, there are two approaches tointerprocess communication: message 
 
passing and remote procedure calls.  In the UML, you still  model these as asynchronous or synchronous 
 
events, respectively. But because these are no longer simple in-process calls, you need to adorn your designs 
 
with further information. 
 
To model interprocess communication, 

 

· Model the multiple flows of control. 

 
· Consider which of these active objects represent processes and which represent threads. Distinguish 

them using the appropriate stereotype. 

 
· Model messaging using asynchronous communication; model remote procedure calls using 

synchronous communication. 

 
· Informally specify the underlying mechanism for communication by using notes, or more formally by 

using collaborations. 
 
Figure shows a distributed reservation system with processes spread across four nodes.Each object is marked using 
the process stereotype. Each object is also marked with a location tagged value, specifying its physical location. 
Communication among theReservationAgent, TicketingManager, andHotelAgentis asynchronous. Modeled 
witha note, communication is described as building on a Java Beans messaging service. Communication between 
the TripPlanner and the ReservationSystem is synchronous. The semantics of their interaction is found in the 
collaboration named CORBA ORB. The 
 
TripPlanneracts as a client, and theReservationAgentacts as a server. By zoominginto the collaboration, you'll 
find the details of how this server and client collaborate. 
 

Figure Modeling Interprocess Communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Time and Space 

 

Terms and Concepts 

 
A timing mark is a denotation for the time at which an event occurs. Graphically, a timing mark is formed as an 
expression from the name given to the message (which is typically different from the name of the action dispatched 
by the message). A time expression is an expression that evaluates to an absolute or relative value of time. A timing 
 
constraint is a semantic statement about the relative or absolute value of time. Graphically, a timing constraint is 
rendered as for any constraint• that is, a string enclosed by brackets and generally connected to an element by a  
dependency relationship. Location is the placement of a component on a node. Graphically, location is rendered as a 
tagged value• that is, a string enclosed by brackets and placed below an element's name, or as the nesting of 
components inside nodes. 
 
Time 
 
Real time systems are, by their very name, time-critical systems. Events may happen at regular or irregular times; 
the response to an event must happen at predictable absolute times or at predictable times relative to the event 
itself. 
 
The passing of messages represents the dynamic aspect of any system, so when you model the time-critical nature of 
a system with the UML, you can give a name to each message in an interaction to be used as a timing mark. Messages 
in an interaction are usually not given names. They are mainly rendered with the name of an event, such as a signal or 
a call. As a result, you can't use the event name to write an expression because the same event may trigger different 
messages. If the designated message is ambiguous, use the explicit name of the message in a timing mark to designate 
the message you want to mention in a time expression. A timing mark is nothing more than an expression  
formed from the name of a message in an interaction. Given a message name, you can refer to any of three functions 
of that message• that is, startTime,stopTime, andexecutionTime. You can then use these functions to specify  
arbitrarilycomplex time expressions, perhaps even using weights or offsets that are either constants or variables (as 
long as those variables can be bound at execution time). Finally, as shown in Figure , you can place these time 
expressions in a timing constraint to specify the timingbehavior of the system. As constraints, you can render them by 
placing them adjacent to the appropriate message, or you can explicitly attach them using dependency relationships. 
 

Figure  Time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Location 
 

 



 
Distributed systems, by their nature, encompass components that are physically scattered among the nodes of a 
system. For many systems, components are fixed in place at the time they are loaded on the system; in other systems, 
components may migrate from node to node. 

 
In the UML, you model the deployment view of a system by using deployment diagrams that represent the topology 
of the processors and devices on which your system executes. Components such as executables, libraries, and tables 
reside on these nodes. Each instance of a node will own instances of certain components, and each instance of a 
component will be owned by exactly one instance of a node (although instances of the same kind of component may 
be spread across different nodes). For example, as Figure shows, the executable component vision.exe may reside on 
the node namedKioskServer. 
 

Figure Location 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Instances of plain classes may reside on a node, as well. For example, as Figure shows, an instance of the 
class LoadAgent lives on the node named Router. 

 

As the figure illustrates, you can model the location of an element in two ways in the UML. First, as shown for the 

KioskServer, you can physically nest the element (textually or graphically) in a extra compartment in its enclosing 

node. Second, as shown for the LoadAgent, you can use the defined tagged value location to designate the node on 

which the class instance resides. 
 
You'll typically use the first form when it's important for you to give a visual cue in your diagrams about the spatial 

separation and grouping of components. Similarly, you'll use the second form when modeling the location of an 

element is important, but secondary, to the diagram at hand, such as when you want to visualize the passing of 

messages among instances. 

 

Common Modeling Techniques 
 
Modeling Timing Constraints 
 

 

Modeling the absolute time of an event, modeling the relative time between events, and modeling the time it takes to 

carry out an action are the three primary time-critical properties of real time systems for which you'll use timing 
constraints. 
 
To model timing constraints, 

 
· For each event in an interaction, consider whether it must start at some absolute time. Model that 

real time property as a timing constraint on the message. 
 

· For each interesting sequence of messages in an interaction, consider whether there is an associated 
maximum relative time for that sequence. Model that real time property as a timing constraint on 
the sequence. 

 

 



 
· For each time critical operation in each class, consider its time complexity. Model those semantics 

as timing constraints on the operation. 
 
For example, as shown in Figure the left-most constraint specifies the repeating start time the call event refresh. 
Similarly, the center timing constraint specifies the maximum duration for calls to getImage. Finally, the right-most 
constraint specifies the time complexity of the call event getImage. 
 

Figure Modeling Timing Constraint 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note  
Observe that executionTimemay be applied to actions such asgetImage, as wellas to timing marks such 
as a andb. Also, timing constraints such as these may be written as free- form text. If you want to specify 
your semantics more precisely, you can use the UML's Object Constraint Language (OCL), described 
further in The UnifiedModeling Language Reference Manual. 

 
Often, you'll choose short names for messages, so that you don't confuse them with operation names. 
 
Modeling the Distribution of Objects 
 

 
When you model the topology of a distributed system, you'll want to consider the physical placement of both 
components and class instances. If your focus is the configuration management of the deployed system, modeling the 
distribution of components is especially important in order to visualize, specify, construct, and document the 
placement of physical things such as executables, libraries, and tables. If your focus is the functionality, scalability, 
and throughput of the system, modeling the distribution of objects is what's important. 
 
 
Deciding how to distribute the objects in a system is a wicked problem, and not just because the problems of 
distribution interact with the problems of concurrency. Naive solutions tend to yield profoundly poor performance, 

and over-engineering solutions aren't much better. In fact, they are probably worse because they usually end up being 

brittle. 
 
 
 
 
 
 
 

 

To model the distribution of objects, 

 



 
· For each interesting class of objects in your system, consider its locality of reference. In other words, 

 
consider all its neighbors and their locations. A tightly coupled locality will have neighboring objects close 
by; a loosely coupled one will have distant objects (and thus, there will be latency in communicating with 
them). Tentatively allocate objects closest to the actors that manipulate them. 

 
· Next consider patterns of interaction among related sets of objects. Co-locate sets of objects that have 

high degrees of interaction, to reduce the cost of communication. Partition sets of objects that have low 
degrees of interaction. 

 
· Next consider the distribution of responsibilities across the system. Redistribute your objects to balance 

the load of each node. 
 

· Consider also issues of security, volatility, and quality of service, and redistribute your objects as 
appropriate. 

 
· Render this allocation in one of two ways: 

 
1. By nesting objects in the nodes of a deployment diagram 

 
2. By explicitly indicating the location of the object as a tagged value 

 
Figure provides an object diagram that models the distribution of certain objects in a retailsystem. The value of this 
diagram is that it lets you visualize the physical distribution of certain key objects. As the diagram shows, two 
objects reside on a Workstation (the Order and Sales objects), two objects reside on a Server 
(theObserverAgentand the Product objects), and one object resides on a DataWarehouse (the ProductTable 
object). 
 

Figure Modeling the Distribution of Objects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling Objects that Migrate 

 



 
For many distributed systems, components and objects, once loaded on the system, stay put. For their lifetime, from 
creation to destruction, they never leave the node on which they were born. There are certain classes of distributed 
systems, however, for which things move about, usually for one of two reasons. 
 
First, you'll find objects migrating in order to move closer to actors and other objects they need to work with to do 
their job better. For example, in a global shipping system, you'd see objects that represent ships, containers, and 
manifests moving from node to node to track their physical counterpart. If you have a ship in Hong Kong, it makes 
for better locality of reference to put the object representing the ship, its containers, and its manifest on a node in 
Hong Kong. When that ship sails to San Diego, you'd want to move the associated objects, as well. 

 

Second, you'll find objects migrating in response to the failure of a node or connection or to balance the load across 

multiple nodes. For example, in an air traffic control system, the failure of one node cannot be allowed to stall a 

nation's entire operations. Rather, a failure-tolerant system such as this will migrate elements to other nodes. 

Performance and throughput may be reduced, 
 
but safe functionality will be preserved. Similarly, and especially in Web-based systems that must deal with 

unpredictable peaks in demand, you'll often want to build mechanisms to automatically balance the processing load, 

perhaps by migrating components and objects to underused nodes. 
 
Deciding how to migrate the objects in a system is an even more wicked problem than simple static distribution 
because migration raises difficult problems of synchronization and preservation of identity. 
 
To model the migration of objects, 

 
Figure provides a collaboration diagram that models the migration of a Web agent thatmoves from node to node, 
collecting information and bidding on resources in order to automatically deliver a lowest-cost travel ticket. 
Specifically, this diagram shows an instance (named t) of the class TravelAgent migrating from one server to 
another. Along the way, the object interacts with anonymous Auctioneer instances at each node, eventually 
delivering a bid for the Itinerary object, located on the client server. 
 
 

Figure  Modeling Objects that Migrate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Statechart Diagrams 

 

Terms and Concepts 

 

A statechart diagram shows a state machine, emphasizing the flow of control from state to state. A state machine is 
a behavior that specifies the sequences of states an object goes through during its lifetime in response to events, 

together with its responses to those events. A state is a condition or situation in the life of an object during which it 

satisfies some condition, performs some activity, or waits for some event. An event is the specification of a 
significant occurrence that has a location in time and space. In the context of state machines, an event is an 

occurrence of a stimulus that can trigger a state transition. A transition is a relationship between two states 
indicating that an object in the first state will perform certain actions and enter the second state when a specified 

event occurs and specified conditions are satisfied. An activity is ongoing nonatomic execution within a state 

machine. An action is an executable atomic computation that results in a change in state of the model or the return of 
a value. Graphically, a statechart diagram is a collection of vertices and arcs. 
 
Common Properties 

 
A statechart diagram is just a special kind of diagram and shares the same common properties as do all other 
diagrams• that is, a name and graphical contents that are a projection into a model. What distinguishes a statechart  
diagram from all other kinds of diagrams is its content. 
 
Contents 

 

Statechart diagrams commonly contain 
 

· Simple states and composite states 

 
· Transitions, including events and actions distinguishes an activity diagram from a statechart diagram is that 

an activity diagram is basically a projection of the elements found in an activity graph, a special case of a 
state machine in which all or most states are activity states and in which all or most transitions are triggered 
by completion of activities in the source state. 

 
 

Common Uses 
 
 
You use statechart diagrams to model the dynamic aspects of a system. These dynamic aspects may involve the 
event- ordered behavior of any kind of object in any view of a system's architecture, including classes (which 
includes active classes), interfaces, components, and nodes. 
 
When you use a statechart diagram to model some dynamic aspect of a system, you do so in the context of virtually 
any modeling element. Typically, however, you'll use statechart diagrams in the context of the system as a whole, a 
subsystem, or a class. You can also attach statechart diagrams to use cases (to model a scenario). 

 

When you model the dynamic aspects of a system, a class, or a use case, you'll typically use statechart 
diagrams in one way. 
 

· To model reactive objects 
 
A reactive — or event-driven — object is one whose behavior is best characterized by its response to events 

dispatched from outside its context. A reactive object is typically idle until it receives an event. When it receives an 

event, its response usually depends on previous events. After the object responds to an event, it becomes idle again, 

waiting for the next event. For these kinds of objects, you'll focus on the stable states of that object, the events that 

trigger a transition from state to state, and the actions that occur on each state change. 

 

Common Modeling Technique 
 
 



Modeling Reactive Objects 
 
 
The most common purpose for which you'll use statechart diagrams is to model the behavior of reactive objects, 
 
especially instances of classes, use cases, and the system as a whole. Whereasinteractions model the behavior of a 
 
society of objects working together, a statechart diagram models the behavior of a single object over its lifetime. 
 
Whereas an activity diagram models the flow of control from activity to activity, a statechart diagram models the 
 
flow of control from event to event. 
 

 

When you model the behavior of a reactive object, you essentially specify three things: the stable states in which that 
object may live, the events that trigger a transition from state to state, and the actions that occur on each state change. 
Modeling the behavior of a reactive object also involves modeling the lifetime of an object, starting at the time of the 
object's creation and continuing until its destruction, highlighting the stable states in which the object may be found. 
 
 
A stable state represents a condition in which an object may exist for some identifiable period of time. When an event 
occurs, the object may transition from state to state. These events may also trigger self- and internal transitions, in 
which the source and the target of the transition are the same state. In reaction to an event or a state change, the object 
may respond by dispatching an action. 
 
 
To model a reactive object, 
 

· Choose the context for the state machine, whether it is a class, a use case, or the system as a whole. 
 

· Choose the initial and final states for the object. To guide the rest of your model, possibly state the pre- 
and postconditions of the initial and final states, respectively. 

 
· Decide on the stable states of the object by considering the conditions in which the object may exist for some 

identifiable period of time. Start with the high-level states of the object and only then consider its possible 
substates. 

 
· Decide on the meaningful partial ordering of stable states over the lifetime of the object. 

 
· Decide on the events that may trigger a transition from state to state. Model these events as triggers 

to transitions that move from one legal ordering of states to another. 
 

· Attach actions to these transitions (as in a Mealy machine) and/or to these states (as in a Moore machine). 
 

· Consider ways to simplify your machine by using substates, branches, forks, joins, and history states.  
· Check that all states are reachable under some combination of events. 

 
· Check that no state is a dead end from which no combination of events will transition the object out of 

that state. 
 

· Trace through the state machine, either manually or by using tools, to check it against 
expected sequences of events and their responses. 

 
For example, Figure shows the statechart diagram for parsing a simple context- freelanguage, such as you might 
find in systems that stream in or stream out messages to XML. In this case, the machine is designed to parse a 
stream of characters that match the syntax 

 

Figure  Modeling Reactive Objects 
 
 
 

 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The first string represents a tag; the second string represents the body of the message. Given a stream of 
characters, only well-formed messages that follow this syntax may be accepted. 
 
 
As the figure shows, there are only three stable states for this state machine: Waiting, GettingToken, 
andGettingBody. This statechart is designed as a Mealy machine, withactions tied to transitions. In fact, there is only 
one event of interest in this state machine, the invocation of put with the actual parameter c (a character). While 
Waiting, this machine throws away any character that does not designate the start of a token (as specified by the 

guard condition). When the start of a token is received, the state of the object changes to GettingToken. While in that 
state, the machine saves any character that does not designatethe end of a token (as specified by the guard condition). 
When the end of a token is received, the state of the object changes to GettingBody. While in that state, the machine 
saves any character that does not designate the end of a message body (as specified by the guard condition). When the 
end of a message is received, the state of the object changes to Waiting,and a value is returned indicating that the 
message has been parsed (and the machine is ready to receive another message).Note that this statechart specifies a 
machine that runs continuously; there is no final state. 
 

Forward and Reverse Engineering 

 

Forward engineering(the creation of code from a model) is possible for statechart diagrams,especially if the 
context of the diagram is a class. For example, using the previous statechart diagram, a forward engineering tool 

could generate the following Java code for the class  
MessageParser. 

 

classMessageParser { public  
boolean put(char c) { switch (state) 

{ case Waiting:  
if (c == '<') {  

state = GettingToken; 
 

token = new StringBuffer(); body = 
new StringBuffer();  

} 

break; 

 



 
caseGettingToken : if (c == '>') 

state = GettingBody; else 
token.append(c);  

break;  
caseGettingBody : if (c == ';') 

state = Waiting; else  
body.append(c); return true;  

} 

return false; 

}  
StringBuffergetToken() { return token;  
}  
StringBuffergetBody() { return body; 

}  
private  

final static int Waiting = 0; final static intGettingToken = 
1; final static intGettingBody = 2; int state = Waiting; 
StringBuffer token, body;  

} 
 
This requires a little cleverness. The forward engineering tool must generate the necessary private attributes 
and final static constants. 
 
Reverse engineering (the creation of a model from code) is theoretically possible, but practicallynot very useful. The 

choice of what constitutes a meaningful state is in the eye of the designer.Reverse engineering tools have no capacity 

for abstraction and therefore cannot automatically produce meaningful statechart diagrams. More interesting than the 

reverse engineering of a model from code is the animation of a model against the execution of a deployed system. For 

example, given the previous diagram, a tool could animate the states in the diagram as they were reached in the 

running system. Similarly, the firing of transitions could be animated, showing the receipt of events and the resulting 

dispatch of actions. Under the control of a debugger, you could control the speed of execution, setting breakpoints to 

stop the action at interesting states to examine the attribute values of individual objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Components 

 

Terms and Concepts 
 
A component is a physical and replaceable part of a system that conforms to and provides the realization of a set of 
 
interfaces. Graphically, a component is rendered as a rectangle with tabs. 
 
Names 
 
Every component must have a name that distinguishes it from other components. A name is a textual string. That 
name alone is known as a simple name; a path name is the component name prefixed by the name of the package in 
which that component lives. A component is typically drawn showing only its name, as in Figure . Just as with 
classes, you may draw components adorned with tagged values or with additional compartments to expose their 
details, as you see in the figure. 

 

Figure  Simple and Extended Component 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Components and Classes 
 

 
In many ways, components are like classes: Both have names; both may realize a set of interfaces; both may 
participate in dependency, generalization, and association relationships; both may be nested; both may have 

instances; both may be participants in interactions. However, there are some significant differences between 

components and classes. 

 
· Classes represent logical abstractions; components represent physical things that live in the world of 

bits. In short, components may live on nodes, classes may not. 

 
· Components represent the physical packaging of otherwise logical components and are at a different 

level of abstraction. 
 

· Classes may have attributes and operations directly. In general, components only have operations that 
are reachable only through their interfaces. 

 
The first difference is the most important. When modeling a system, deciding if you should use a class or a 
component involves a simple decision• if the thing you are modeling lives directly on a node, use a component;  
otherwise, use a class. 

 



 
The second difference suggests a relationship between classes and components. In particular, a component is the 
physical implementation of a set of other logical elements, such as classes and collaborations. As Figure shows, the 
relationship between a component and the classes it implements can be shown explicitly by using a dependency 
relationship. Most of the time, you'll never need to visualize these relationships graphically. Rather, you will keep 
them as a part of the component's specification. 
 

Figure  Components and Classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The third difference points out how interfaces bridge components and classes. As described in more detail in the 
next section, components and classes may both realize an interface, but a component's services are usually 
available only through its interfaces. 
 
 

Components and Interfaces 
 

 
An interface is a collection of operations that are used to specify a service of a class or a component. The 

relationship between component and interface is important. All the most common component-based operating 

system facilities (such as COM+, CORBA, and Enterprise Java Beans) use interfaces as the glue that binds 
components together. 

 

Using one of these facilities, you decompose your physical implementation by specifying interfaces that 
represent the major seams in the system. You then provide components that realize the interfaces, along with 
other components that access the services through their interfaces. This mechanism permits you to deploy a 
system whose services are somewhat location-independent and, as discussed in the next section, replaceable. 
 
As Figure indicates, you can show the relationship between a component and its interfaces in one of two ways. The 
first (and most common) style renders the interface in its elided, iconic form. The component that realizes the 
interface is connected to the interface using an elided realization relationship. The second style renders the interface 
in its expanded form, perhaps revealing its operations. The component that realizes the interface is connected to the 
interface using a full realization relationship. In both cases, the component that accesses the services of the other 
component through the interface is connected to the interface using a dependency relationship. 

 



 
Figure Components and Interfaces 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

An interface that a component realizes is called an export interface, meaning an interface that the component 
provides as a service to other components. A component may provide many export interfaces. The interface that a 
component uses is called an import interface, meaning an interface that the component conforms to and so builds on. 
A component may conform to many import interfaces. Also, a component may both import and export interfaces. 
 
A given interface may be exported by one component and imported by another. The fact that this interface lies 
between the two components breaks the direct dependency between the components. A component that uses a given 
interface will function properly no matter what component realizes that interface. Of course, a component can be 
used in a context if and only if all its import interfaces are provided by the export interfaces of other components. 
 

 

Binary Replaceability 

 

The basic intent of every component-based operating system facility is to permit the assembly of systems from 
binary replaceable parts. This means that you can create a system out of components and then evolve that system by 
adding new components and replacing old ones, without rebuilding the system. Interfaces are the key to making this 
happen. When you specify an interface, you can drop into the executable system any component that conforms to or 

provides that interface. You can extend the system by making the components provide new services through other 
interfaces, which, in turn, other components can discover and use. These semantics explain the intent behind the 
definition of components in the UML. A component is a physical and replaceable part of a system that conforms to 
and provides the realization of a set of interfaces. 
 
First, a component is physical. It lives in the world of bits, not concepts. 
 
Second, a component is replaceable. A component is substitutable• it is possible to replace a component with 

another that conforms to the same interfaces. Typically, the mechanism of inserting or replacing a component to 

form a run time system is transparent to the component user and is enabled by object models (such as COM+ and 

Enterprise Java Beans) that require little or no intervening transformation or by tools that automate the 

mechanism. 

 
Third, a component is part of a system. A component rarely stands alone. Rather, a given component collaborates 
with other components and in so doing exists in the architectural or technology context in which it is intended to be 
used. A component is logically and physically cohesive and thus denotes a meaningful structural and/or behavioral 

 

 



 
chunk of a larger system. A component may be reused across many systems. Therefore, a component represents a 

fundamental building block on which systems can be designed and composed. This definition is recursive• a system 

at one level of abstraction may simply be a component at a higher level of abstraction. 
 
Fourth, as discussed in the previous section, a component conforms to and provides the realization of a 
set of interfaces. 
 
Kinds of Components 
 
Three kinds of components may be distinguished. 

 

First, there are deployment components. These are the components necessary and sufficient to form an executable 
system, such as dynamic libraries (DLLs) and executables (EXEs). The UML's definition of component is broad 
enough to address classic object models, such as COM+, CORBA, and Enterprise Java Beans, as well as alternative 
object models, perhaps involving dynamic Web pages, database tables, and executables using proprietary 
communication mechanisms. 
 
Second, there are work product components. These components are essentially the residue of the development 
process, consisting of things such as source code files and data files from which deployment components are created. 
These components do not directly participate in an executable system but are the work products of development that 
are used to create the executable system. 
 
Third are execution components. These components are created as a consequence of an executing 
system, such as a COM+ object, which is instantiated from a DLL. 

 

Organizing Components 
 
 
You can organize components by grouping them in packages in the same manner in which you organize classes. 

 

You can also organize components by specifying dependency, generalization, association 
(including aggregation), and realization relationships among them. 

 
Standard Elements 

 

All the UML's extensibility mechanisms apply to components. Most often, you'll use tagged values to extend 
component properties (such as specifying the version of a development component) and stereotypes to specify new 
kinds of components (such as operating system-specific components). 

 

 

The UML defines five standard stereotypes that apply to components: 
 

1. Specifies a component that may be executed on a node 

executable  
  

2. library Specifies a static or dynamic object library 

3. table Specifies a component that represents a database table 

4. file Specifies a component that represents a document containing source code or 

 Data 
  

5. document Specifies a component that represents a document 

 
 
 
 

 



Common Modeling Techniques 
 

Modeling Executables and Libraries 

 

The most common purpose for which you'll use components is to model the deployment components that make up 
your implementation. If you are deploying a trivial system whose implementation consists of exactly one 
executable file, you will not need to do any component modeling. If, on the other hand, the system you are 

deploying is made up of several executables and associated object libraries, doing component modeling will help 
you to visualize, specify, construct, and document the decisions you've made about the physical system. 
Component modeling is even more important if you want to control the versioning and configuration management 
of these parts as your system evolves. 
 
For most systems, these deployment components are drawn from the decisions you make about how to segment the 
physical implementation of your system. These decisions will be affected by a number of technical issues (such as 
your choice of component-based operating system facilities), configuration management issues (such as your 
decisions about which parts will likely change over time), and reuse issues (that is, deciding which components you 
can reuse in or from other systems). 
 
To model executables and libraries, 

 
· Identify the partitioning of your physical system. Consider the impact of technical, 

configuration management, and reuse issues. 
 

· Model any executables and libraries as components, using the appropriate standard elements. If 
your implementation introduces new kinds of components, introduce a new appropriate stereotype. 

 
· If it's important for you to manage the seams in your system, model the significant interfaces 

that some components use and others realize. 
 

· As necessary to communicate your intent, model the relationships among these executables, libraries, 
and interfaces. Most often, you'll want to model the dependencies among these parts in order to visualize 
the impact of change. 

 
 
For example, Figure shows a set of components drawn from a personal productivity tool that runs on a single personal 

computer. This figure includes one executable (animator.exe, with a tagged value noting its version number) and 

four libraries (dlog.dll, wrfrme.dll, render.dll, and raytrce.dll), all of which use the UML's standard elements for 

executables and libraries, respectively. This diagram also presents the dependencies among these components. 
 
 

Figure Modeling Executables and Libraries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
As your models get bigger, you will find that many components tend to cluster together in groups that are 

conceptually and semantically related. In the UML, you can use packages to model these clusters of components.For 

larger systems that are deployed across several computers, you'll want to model the way your components are 

distributed by asserting the nodes on which they are located. 
 
Modeling Tables, Files, and Documents 

 

Modeling the executables and libraries that make up the physical implementation of your system is useful, but often 
you'll find there are a host of ancillary deployment components that are neither executables nor libraries and yet are 
critical to the physical deployment of your system. For example, your implementation might include data files, help 

documents, scripts, log files, initialization files, and installation/removal files. Modeling these components is an 
important part of controlling the configuration of your system. Fortunately, you can use UML components to model 
all of these artifacts. 
 
To model tables, files, and documents, 
 

· Identify the ancillary components that are part of the physical implementation of your system. 
 

· Model these things as components. If your implementation introduces new kinds of 
artifacts, introduce a new appropriate stereotype. 

 
· As necessary to communicate your intent, model the relationships among these ancillary components 

and the other executables, libraries, and interfaces in your system. Most often, you'll want to model the 
dependencies among these parts in order to visualize the impact of change. 

 
For example, Figure builds on the previous figure and shows the tables, files, and documents that are part of the 
deployed system surrounding the executable animator.exe. This figure includes one document (animator.hlp), 
one simple file (animator.ini), and one database table (shapes.tbl ), all of which use the UML's standard elements 
for cuments, files, and tables, respectively. 
 

Figure  Modeling Tables, Files, and Documents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Modeling databases can get complicated when you start dealing with multiple tables, triggers, and stored 

procedures. To visualize, specify, construct, and document these features, you'll need to model the logical schema, 
as well as the physical databases. 
 
Modeling an API 

 
If you are a developer who's assembling a system from component parts, you'll often want to see the application 
programming interfaces (APIs) that you can use to glue these parts together. APIs represent the programmatic seams 
in your system, which you can model using interfaces and components. 
 
An API is essentially an interface that is realized by one or more components. As a developer, you'll really care 
only about the interface itself; which component realizes an interface's operations is not relevant as long as some 
component realizes it. From a system configuration management perspective, though, these realizations are 
important because you need to ensure that, when you publish an API, there's some realization available that carries 
out the API's obligations. Fortunately, with the UML, you can model both perspectives. 

 

The operations associated with any semantically rich API will be fairly extensive, so most of the time you won't 
 
need to visualize all these operations at once. Instead, you'll tend to keep theoperations in the backplane of your 
 
models and use interfaces as handles with which you can find these sets of operations. If you want to construct 
 
executable systems against these APIs, you will need to add enough detail so that your development tools can 
 
compile against the properties of your interfaces. Along with the signatures of each operation, you'll probably also 
 
want to include uses cases that explain how to use each interface. 
 
To model an API, 

 
· Identify the programmatic seams in your system and model each seam as an interface, collecting 

the attributes and operations that form this edge. 
 

· Expose only those properties of the interface that are important to visualize in the given context; otherwise,  
hide these properties, keeping them in the interface's specification for reference, as necessary. 

 
· Model the realization of each API only insofar as it is important to show the configuration of a 

specific implementation. 
 
Figure exposes the APIs of the executable in the previous two figures. You'll see four interfaces that form 
the API of the executable: IApplication, IModels, IRendering, and  
IScripts. 
 

Figure  Modeling an API 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Modeling Source Code 

 
The most common purpose for which you'll use components is to model the physical parts that make up your 

implementation. This also includes the modeling of all the ancillary parts of your deployed system, including tables, 
files, documents, and APIs. The second most common purpose for which you'll use components is to model the 
configuration of all the source code files that your development tools use to create these components. These 
represent the work product components of your development process. 
 
Modeling source code graphically is particularly useful for visualizing the compilation dependencies among  your 
 
source  code  files  and  for  managing  the  splitting  and  merging  ofgroups  of  these  files  when  you  fork  and  join 
 
development  paths.  In  this  manner,  UML  components  can  be  the  graphical  interface  to  your  configuration 
 
management and version control tools. 

 

For most systems, source code files are drawn from the decisions you make about how to segment the files your 
development environment needs. These files are used to store the details of your classes, interfaces, collaborations, 
and other logical elements as an intermediate step to creating the physical, binary components that are derived from 

these elements by your tools. Most of the time, these tools will impose a style of organization (one or two files per 
class is common), but you'll still want to visualize the relationships among these files. How you organize groups of 
these files using packages and how you manage versions of these files is driven by your decisions about how to 
manage change. 
 
To model source code, 

 

· Depending on the constraints imposed by your development tools, model the files used to store the details 

of all your logical elements, along with their compilation dependencies. 

 
· If it's important for you to bolt these models to your configuration management and version control 

tools, you'll want to include tagged values, such as version, author, and check in/check out information, 

for each file that's under configuration management. 

 
· As far as possible, let your development tools manage the relationships among these files, and use 

the UML only to visualize and document these relationships. 
 
For example, Figure shows some source code files that are used to build the library render.dll from the previous 
examples. This figure includes four header files (render.h, rengine.h, poly.h, and colortab.h) that represent the 
source code for the specification of certain classes. There is also one implementation file (render.cpp) that 
represents the implementation of one of these headers. 

 

Figure  Modeling Source Code 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
As your models get bigger, you will find that many source code files tend to cluster together in groups that 

are conceptually and semantically related. Most of the time, your development tools will place these 
groups in separate directories. In the UML, you can use packages to model these clusters of source code 

files. 

 
In the UML, it is possible to visualize the relationship of a class to its source code file and, in turn, the 
relationship of a source code file to its executable or library by using trace relationships. However, you'll 
rarely need to go to this detail of modeling. 
 
Deployment 

 

Terms and Concepts 

 

A node is a physical element that exists at run time and represents a computational resource, generally 
having at least some memory and, often, processing capability. Graphically, a node is rendered as a 

cube. 
 
Names 
 

 

Every node must have a name that distinguishes it from other nodes. A name is a textual string. That name 

alone is known as a simple name; a path name is the node name prefixed by the name of the package in 

which that node lives. A node is typically drawn showing only its name, as in Figure . Just as with classes, 

you may draw nodes adorned with tagged values or with additional compartments to expose their details. 

 

Figure  Simple and Extended Nodes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note 

 
A node name may be text consisting of any number of letters, numbers, and certain punctuation marks 
(except for marks such as the colon, which is used to separate a node name and the name of its enclosing 
package) and may continue over several lines. In practice, node names are short nouns or noun phrases 
drawn from the vocabulary of the implementation. 

 

 



Nodes and Components 

 

In many ways, nodes are a lot like components: Both have names; both may participate in dependency, 
generalization, and association relationships; both may be nested; both may have instances; both may 
be participants in interactions. However, there are some significant differences between nodes and 
components. 

 
· Components are things that participate in the execution of a system; nodes are things 

that execute components. 
 

· Components represent the physical packaging of otherwise logical elements; 
nodes represent the physical deployment of components. 

 
This first difference is the most important. Simply put, nodes execute components; components 
are things that are executed by nodes. 
 

The second difference suggests a relationship among classes, components, and nodes. In particular, a 

component is the materialization of a set of other logical elements, such as classes and collaborations, and 

a node is the location upon which components are deployed. A class may be implemented by one or more 

components, and, in turn, a component may be deployed on one or more nodes. As Figure shows, the 

relationship between a node and the components it deploys can be shown explicitly by using a 

dependency relationship. Most of the time, you won't need to visualize these relationships graphically but 

will keep them as a part of the node's specification. 
 

Figure  Nodes and Components 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



A set of objects or components that are allocated to a node as a group is called a distribution unit. 
 

Note 

 

Nodes are also class-like in that you can specify attributes and operations for them. For 

example, you might specify that a node provides the attributes processorSpeed and 

memory, as well as the operations turnOn, turnOff, and suspend. 
 
 

Organizing Nodes 
 

 
You can organize nodes by grouping them in packages in the same manner in which you 
can organize classes and components. 
 
You can also organize nodes by specifying dependency, generalization, and association 
(including aggregation) relationships among them. 
 
Connections 

 

The most common kind of relationship you'll use among nodes is an association. In this context, an 
association represents a physical connection among nodes, such as an Ethernet connection, a serial line, 
or a shared bus, as Figure shows. You can even use associations to model indirect connections, such as a 
satellite link between distant processors. 
 

Figure Connections 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Because nodes are class-like, you have the full power of associations at your disposal. This means that 
 
you can include roles, multiplicity, and constraints. As in the previous figure, you should stereotype these 

associations if you want to model new kinds of connections• for example, to distinguish between 

a 10-T Ethernet connection and an RS-232 serial connection. 

 

Common Modeling Techniques 
 

Modeling Processors and Devices 

 

Modeling the processors and devices that form the topology of a stand-alone, embedded, 

client/server, or distributed system is the most common use of nodes.Because all of the UML's 

extensibility mechanisms apply to nodes, you will often use stereotypes to specify new kinds of 

nodes that you can use to represent specific kinds of processors and devices. A processor is a 

 



 
node that has processing capability, meaning that it can execute a component. A device is a node 

that has no processing capability (at least, none that are modeled at this level of abstraction) and, 

in general, represents something that interfaces to the real world. 
 
To model processors and devices, 

 

· Identify the computational elements of your system's deployment view and model each as a 
node.If these elements represent generic processors and devices, then stereotype them as such. 
If they are kinds of processors and devices that are part of the vocabulary of your domain, then 
specify an appropriate stereotype with an icon for each. 

 
· As with class modeling, consider the attributes and operations that might apply to each node. 

 
For example, Figure takes the previous diagram and stereotypes each node. The server is a node 
stereotyped as a generic processor; the kiosk and the console are nodes stereotyped as special kinds of 
processors; and the RAID farm is a node stereotyped as a special kind of device. 
 

Figure Processors and Devices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling the Distribution of Components 

 

When you model the topology of a system, it's often useful to visualize or specify the physical 

distribution of its components across the processors and devices that make up the system. 
 
To model the distribution of components, 
 

· For each significant component in your system, allocate it to a given node. 
 
 
 
 
 
 
 
 
 
 
 

 



 
· Consider duplicate locations for components. It's not uncommon for the same kind 

of component (such as specific executables and libraries) to reside on multiple nodes 
simultaneously. 

 
· Render this allocation in one of three ways. 

 

1. Don't make the allocation visible, but leave it as part of the backplane of 

your model• that is, in each node's specification. 
 

2. Using dependency relationships, connect each node with the components it 
deploys. 

 
3. List the components deployed on a node in an additional compartment. 

 

 

Using the third approach, Figure takes the earlier diagrams and specifies the executable components that 
reside on each node. This diagram is a bit different from the previous ones in that it is an object diagram, 
visualizing specific instances of each node. In this case, the RAID farm and kiosk instances are both 
anonymous and the other two instances are named (c for the console and s for the server). Each processor 
in this figure is rendered with an additional compartment showing the component it deploys. The server 
object is also rendered with its attributes (processorSpeed and memory) and their values visible. 
 

Figure  Modeling the Distribution of Components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Components need not be statically distributed across the nodes in a system. In the UML, it is possible to 

model the dynamic migration of components from node to node, as in an agent-based system or a high-

reliability system that involves clustered servers and replicated databases. 
 
Collaborations 
 

Component Diagrams 
 

Terms and Concepts 

 

A component diagram shows a set of components and their relationships. Graphically, a 
component diagram is a collection of vertices and arcs. 
 
Common Properties  
A component diagram is just a special kind of diagram and shares the same common properties as do all 

other diagrams• a name and graphical contents that are a projection into a model. What distinguishes a 

component diagram from all other kinds of diagrams is its particular content. 

 



Contents 

 

Component diagrams commonly contain 
 

· Components 
 

· Interfaces 

 

· Dependency, generalization, association, and realization relationships Like 

all other diagrams, component diagrams may contain notes and constraints. 

 
Component diagrams may also contain packages or subsystems, both of which are used to group elements 
of your model into larger chunks. Sometimes, you'll want to place instances in your component diagrams, 
as well, especially when you want to visualize one instance of a family of component-based systems. 
 

 

Common Uses 
 

 

You use component diagrams to model the static implementation view of a system. This view primarily 

supports the configuration management of a system's parts, made up of components that can be 
assembled in various ways to produce a running system. 
 
When you model the static implementation view of a system, you'll typically use 
component diagrams in one of four ways. 
 

1.  To model source code 

 
With most contemporary object- oriented programming languages, you'll cut code using integrated 
development environments that store your source code in files. You can use component diagrams to model 
the configuration management of these files, which represent work-product components. 
 

2.  To model executable releases 

 
A release is a relatively complete and consistent set of artifacts delivered to an internal or external user. In 
the context of components, a release focuses on the parts necessary to deliver a running system. When you 
 
model a release using component diagrams, you are visualizing, specifying, and documenting the decisions 
about the physical parts that constitute your software• that is, its deployment components. 

 

3.  To model physical databases 

 

Think of a physical database as the concrete realization of a schema, living in the world of bits. Schemas, 
in effect, offer an API to persistent information; the model of a physical database represents the storage of 
that information in the tables of a relational database or the pages of an object-oriented database. You use 
component diagrams to represent these and other kinds of physical databases. 
 

4.  To model adaptable systems 

 

Some systems are quite static; their components enter the scene, participate in an execution, and then 
depart. Other systems are more dynamic, involving mobile agents or components that migrate for purposes 
of load balancing and failure recovery. You use component diagrams in conjunction with some of the 
UML's diagrams for modeling behavior to represent these kinds of systems. 

 
 
 
 

 



Common Modeling Techniques 
 

Modeling Source Code 

 

If you develop software in Java, you'll usually save your source code in .java files. If you develop 
software using C++, you'll typically store your source code in header files (.h files) and bodies (.cpp files). 
If you use IDL to develop COM+ or CORBA applications, one interface from your design view will often 
expand into four source code files: the interface itself, the client proxy, the server stub, and a bridge class. 

As your application grows, no matter which language you use, you'll find yourself organizing these files 
into larger groups. Furthermore, during the construction phase of development, you'll probably end up 
creating new versions of some of these files for each new incremental release you produce, and you'll want 
to place these versions under the control of a configuration management system. 
 
 
Much of the time, you will not need to model this aspect of a system directly. Instead, you'll let your 
development environment keep track of these files and their relationships. Sometimes, however, it's helpful 

to visualize these source code files and their relationships using component diagrams. Component 

diagrams used in this way typically contain only work-product components stereotyped as files, together 
with dependency relationships. For example, you might reverse engineer a set of source code files to 

visualize their web of compilation dependencies. You can go in the other direction by specifying the 

relationships among your source code files and then using those models as input to compilation tools, such 
as make on Unix. Similarly, you might want to use component diagrams to visualize the history of a set of 

source code files that are under configuration management. By extracting information from your 
configuration management system, such as the number of times a source code file has been checked out 

over a period of time, you can use that information to color component diagrams, showing "hot spots" of 

change among your source code files and areas of architectural churn. 
 
To model a system's source code, 

 
· Either by forward or reverse engineering, identify the set of source code files of interest 

and model them as components stereotyped as files. 
 

· For larger systems, use packages to show groups of source code files. 

 
· Consider exposing a tagged value indicating such information as the version number of the 

source code file, its author, and the date it was last changed. Use tools to manage the value of 
this tag. 

 
· Model the compilation dependencies among these files using dependencies. Again, use tools 

to help generate and manage these dependencies. 

 
For example, Figure shows five source code files. signal.h is a header file. Three of its versions are 
shown, tracing from new versions back to their older ancestors. Each variant of this source code file is 
rendered with a tagged value exposing its version number. 
 

Figure Modeling Source Code 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
This header file (signal.h) is used by two other files (interp.cpp and .signal.cpp), both of which are 
bodies. One of these files (interp.cpp) has a compilation dependency to another header (irq.h); in turn, 
device.cpp has a compilation dependency to interp.cpp. Given this component diagram, it's easy to trace 

the impact of changes. For example, changing the source code file signal.h will require the recompilation 
of three other files: signal.cpp, interp.cpp, and transitively, device.cpp. As this diagram also shows, the 
file irq.h is not affected. 
 
Diagrams such as this can easily be generated by reverse engineering from the information held by your 
development environment's configuration management tools. 
 
Modeling an Executable Release 

 
Releasing a simple application is easy: You throw the bits of a single executable file on a disk, and 
your users just run that executable. For these kinds of applications, you don't need component 
diagrams because there's nothing difficult to visualize, specify, construct, or document. 
 
Releasing anything other than a simple application is not so easy. You need the main executable (usually, 
a .exe file), but you also need all its ancillary parts, such as libraries (commonly .dll files if you are 
working in the context of COM+, or .class and .jar files if you are working in the context of Java), 
databases, help files, and resource files. For distributed systems, you'll likely have multiple executables 
and other parts scattered across various nodes. If you are working with a system of applications, you'll 
find that some of these components are unique to each application but that many are shared among 
 
applications. As you evolve your system, controlling the configuration of these many components 
becomes an important activity• and a more difficult one because changes in the components associated 
with one application may affect the operation of other applications. 

 

For this reason, you use component diagrams to visualize, specify, construct, and document the 
configuration of your executable releases, encompassing the deployment components that form each 
release and the relationships among those components. You can use component diagrams to forward 
engineer a new system and to reverse engineer an existing one. 
 
When you create component diagrams such as these, you actually just model a part of the things and 
relationships that make up your system's implementation view. For this reason, each component diagram 
should focus on one set of components at a time. 
 
To model an executable release, 
 

 
· Identify the set of components you'd like to model. Typically, this will involve some or all the 

components that live on one node, or the distribution of these sets of components across all the 
nodes in the system. 

 
· Consider the stereotype of each component in this set. For most systems, you'll find a small 

number of different kinds of components (such as executables, libraries, tables, files, and 
documents). You can use the UML's extensibility mechanisms to provide visual cues for these 
stereotypes. 

 
· For each component in this set, consider its relationship to its neighbors. Most often, this will 

involve interfaces that are exported (realized) by certain components and then imported (used) by 
others. If you want to expose the seams in your system, model these interfaces explicitly. If you 
want your model at a higher level of abstraction, elide these relationships by showing only 
dependencies among the components. 

 
For example, Figure models part of the executable release for an autonomous robot. This figure focuses on 
the deployment components associated with the robot's driving and calculation functions. You'll find one 
component (driver.dll) that exports an interface (IDrive) that is, in turn, imported by another component 
(path.dll). driver.dll exports one other interface (ISelfTest) that is probably used by other 

 



 
components in the system, although they are not shown here. There's one other component shown in this 
diagram (collision.dll), and it, too, exports a set of interfaces, although these details are elided: path.dll is 
shown with a dependency directly to collision.dll. 
 

Figure Modeling an Executable Release 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are many more components involved in this system. However, this diagram only focuses on those 
deployment components that are directly involved in moving the robot. Note that in this component-based 
architecture, you could replace a specific version of driver.dll with another that realized the same (and 
perhaps additional) interfaces, and path.dll would still function properly. If you want to be explicit about 
the operations that driver.dll realizes, you could always render its interface using class notation, 
stereotyped as »interface . 
 
Modeling a Physical Database 

 
A logical database schema captures the vocabulary of a system's persistent data, along with the semantics 
of their relationships. Physically, these things are stored in a database for later retrieval, either a relational 
database, an object-oriented one, or a hybrid object/relational database. The UML is well suited to 
modeling physical databases, as well as logical database schemas. 
 
Physical database design is beyond the scope of this book; the focus here is simply to show you how you 
can model databases and tables using the UML.Mapping a logical database schema to an object-oriented 

 

 



 
database is straightforward because even complex inheritance lattices can be made persistent directly. 

Mapping a logical database schema to a relational database is not so simple, however. In the presence of 

inheritance, you have to make decisions about how to map classes to tables. Typically, you can apply one 

or a combination of three strategies. 

 
1. Define a separate table for each class. This is a simple but naive approach because it 

introduces maintenance headaches when you add new child classes or modify your 
parent classes. 

 
2. Collapse your inheritance lattices so that all instances of any class in a hierarchy has the same 

state. The downside with this approach is that you end up storing superfluous information for 
many instances. 

 
3. Separate parent and child states into different tables. This approach best mirrors your 

inheritance lattice, but the downside is that traversing your data will require many cross-
table joins. 

 
When designing a physical database, you also have to make decisions about how to map operations 

defined in your logical database schema. Object- oriented databases make the mapping fairly 

transparent. But, with relational databases, you have to make some decisions about how these logical 

operations are implemented. Again, you have some choices. 

 
1. For simple CRUD (create, read, update, delete) operations, implement them 

with standard SQL or ODBC calls. 
 

2. For more-complex behavior (such as business rules), map them to triggers or 
stored procedures. 

 
Given these general guidelines, to model a physical database, 
 

· Identify the classes in your model that represent your logical database schema. 

 
· Select a strategy for mapping these classes to tables. You will also want to consider the 

physical distribution of your databases. Your mapping strategy will be affected by the location 
in which you want your data to live on your deployed system. 

 
· To visualize, specify, construct, and document your mapping, create a 

component diagram that contains components stereotyped as tables. 
 

· Where possible, use tools to help you transform your logical design into a 
physical design. 

 

Figure shows a set of database tables drawn from an information system for a school. You will find one 
database (school.db, rendered as a component stereotyped as database) that's composed of five tables: 
student, class, instructor, department, and course (rendered as a component stereotyped as table, one of 
the UML's standard elements). In the corresponding logical database schema, there was no inheritance, so 
mapping to this physical database design is straightforward. 
 

Figure  Modeling a Physical Database 
 
 
 
 
 
 
 
 
 

 



 
Although not shown in this example, you can specify the contents of each table. Components can have 
attributes, so a common idiom when modeling physical databases is to use these attributes to specify the 

columns of each table. Similarly, components can have operations, and these can be used to denote stored 

procedures. 
 
Modeling Adaptable Systems 

 

All the component diagrams shown thus far have been used to model static views. Their components 

spend their entire lives on one node. This is the most common situation you'll encounter, but especially 
in the domain of complex, distributed systems, you'll need to model dynamic views. For example, you 

might have a system that replicates its databases across several nodes, switching the one that is the 

primary database when a server goes down. Similarly, if you are modeling a globally distributed 24x7 
operation (that is, a system that's up 24 hours a day, 7 days a week), you will likely encounter mobile 

agents, components that migrate from node to node to carry out some transaction. To model these 
dynamic views, you'll need to use a combination of component diagrams, object diagrams, and 

interaction diagrams. 
 
To model an adaptable system, 

 
Consider the physical distribution of the components that may migrate from node to node. You can specify 
the location of a component instance by marking it with a location tagged value, which you can then render 
in a component diagram (although, technically speaking, a diagram that contains only instances is an 
object diagram). 
 

· If you want to model the actions that cause a component to migrate, create a corresponding 
interaction diagram that contains component instances. You can illustrate a change of 
location by drawing the same instance more than once, but with different values for its 
location tagged value. 

 
For example, Figure models the replication of the database from the previous figure. We show two 
instances of the component school.db. Both instances are anonymous, and both have a different value 
for their location tagged value. There's also a note, which explicitly specifies which instance replicates 
the other. 
 

Figure Modeling Adaptable Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



If you want to show the details of each database, you can render them in their canonical form• a 

component stereotyped as a database.Although not shown here, you could use an interaction diagram to 

model the dynamics of switching from one primary database to another. 
 
Forward and Reverse Engineering 

 

Forward engineering and reverse engineering components are pretty direct, because components are 
themselves physical things (executables, libraries, tables, files, and documents) that are therefore close to 
the running system. When you forward engineer a class or a collaboration, you really forward engineer to a 

component that represents the source code, binary library, or executable for that class or collaboration. 
Similarly, when you reverse engineer source code, binary libraries, or executables, you really reverse 
engineer to a component or set of components that, in turn, trace to classes or collaborations. 
 
Choosing to forward engineer (the creation of code from a model) a class or collaboration to source code, 
a binary library, or an executable is a mapping decision you have to make. You'll want to take your logical 
models to source code if you are interested in controlling the configuration management of files that are 
then manipulated by a development environment. You'll want to take your logical models directly to 
binary libraries or executables if you are interested in managing the components that you'll actually deploy 
on a running system. In some cases, you'll want to do both. A class or collaboration may be denoted by 
source code, as well as by a binary library or executable. 
 
To forward engineer a component diagram, 

 
· For each component, identify the classes or collaborations that the 

component implements. 

 
· Choose the target for each component. Your choice is basically between source code (a form that 

can be manipulated by development tools) or a binary library or executable (a form that can be 
dropped into a running system).  

· Use tools to forward engineer your models. 

 
Reverse engineering (the creation of a model from code) a component diagram is not a perfect process 
because there is always a loss of information. From source code, you can reverse engineer back to 
classes; this is the most common thing you'll do. Reverse engineering source code to components will 
uncover compilation dependencies among those files. For binary libraries, the best you can hope for is to 
denote the library as a component and then discover its interfaces by reverse engineering. This is the 
second most common thing you'll do with component diagrams. In fact, this is a useful way to approach 
 
a set of new libraries that may be otherwise poorly documented. For executables, the best you can hope for is 

to denote the executable as a component and then disassemble its code• something you'll rarely 

need to do unless you work in assembly language. 
 
To reverse engineer a component diagram, 

 

· Choose the target you want to reverse engineer. Source code can be reverse engineered 
to components and then classes. Binary libraries can be reverse engineered to uncover 
their interfaces. Executables can be reverse engineered the least. 

 
· Using a tool, point to the code you'd like to reverse engineer. Use your tool to generate a 

new model or to modify an existing one that was previously forward engineered. 
 

· Using your tool, create a component diagram by querying the model. For example, you might 
start with one or more components, then expand the diagram by following relationships or 
neighboring components. Expose or hide the details of the contents of this component 
diagram as necessary to communicate your intent. 

 
For example, Figure provides a component diagram that represents the reverse engineering of the ActiveX 
component vbrun.dll. As the figure shows, the component realizes 11 interfaces. Given this diagram, you 

 
 



can begin to understand the semantics of the component by next exploring the details of its interfaces. 
 

Figure  Reverse Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Especially when you reverse engineer from source code, and sometimes when you reverse engineer from 
binary libraries and executables, you'll do so in the context of a configuration management system. This 
means that you'll often be working with specific versions of files or libraries, with all versions of a 

configuration compatible with one another. In these cases, you'll want to include a tagged value that 
represents the component version, which you can derive from your configuration management system. In 
this manner, you can use the UML to visualize the history of a component across various releases. 

 

Deployment Diagrams 
 

Terms and Concepts 

 
A deployment diagram is a diagram that shows the configuration of run time processing nodes and the 
components that live on them. Graphically, a deployment diagram is a collection of vertices and arcs. 
 
Common Properties 
 

 
A deployment diagram is just a special kind of diagram and shares the same common properties as all other 

diagrams• a name and graphical contents that are a projection into a model. What distinguishes a 

deployment diagram from all other kinds of diagrams is its particular content. 
 
 
 
 

 



Contents 

 

Deployment diagrams commonly contain 

 

· Nodes 
 

· Dependency and association relationships 
 
Like all other diagrams, deployment diagrams may contain notes and constraints. 

 

Deployment diagrams may also contain components, each of which must live on some node. 

Deployment diagrams may also contain packages or subsystems, both of which are used to group 
elements of your model into larger chunks. Sometimes, you'll want to place instances in your 
deployment diagrams, as well, especially when you want to visualize one instance of a family of 
hardware topologies. 
 

Note 

 
In many ways, a deployment diagram is just a special kind of class diagram, 
which focuses on a system's nodes. 

 

Common Uses 
 

 

You use deployment diagrams to model the static deployment view of a system. This view 
primarily addresses the distribution, delivery, and installation of the parts that make up the 
physical system. 
 
There are some kinds of systems for which deployment diagrams are unnecessary. If you are developing 

a piece of software that lives on one machine and interfaces only with standard devices on that machine 

that are already managed by the host operating system (for example, a personal computer's keyboard, 

display, and modem), you can ignore deployment diagrams. On the other hand, if you are developing a 

piece of software that interacts with devices that the host operating system does not typically manage or 

that is physically distributed across multiple processors, then using deployment diagrams will help you 

reason about your system's software-to-hardware mapping. 
 
When you model the static deployment view of a system, you'll typically use 
deployment diagrams in one of three ways. 
 

1.  To model embedded systems 

 

An embedded system is a software-intensive collection of hardware that interfaces with the physical 
world. Embedded systems involve software that controls devices such as motors, actuators, and displays 
and that, in turn, is controlled by external stimuli such as sensor input, movement, and temperature 

changes. You can use deployment diagrams to model the devices and processors that comprise an 
embedded system. 
 

2.  To model client/server systems 
 

 

A client/server system is a common architecture focused on making a clear separation of concerns between 

the system's user interface (which lives on the client) and the system's persistent data (which lives on the 

server). Client/ server systems are one end of the continuum of distributed systems and require you to 

make decisions about the network connectivity of clients 
 
to servers and about the physical distribution of your system's software components across the 
nodes. You can model the topology of such systems by using deployment diagrams. 

 



3.  To model fully distributed systems 

 

At the other end of the continuum of distributed systems are those that are widely, if not globally, 

distributed, typically encompassing multiple levels of servers. Such systems are often hosts to multiple 

versions of software components, some of which may even migrate from node to node. Crafting such 

systems requires you to make decisions that enable the continuous change in the system's topology. You 

can use deployment diagrams to visualize the system's current topology and distribution of components to 

reason about the impact of changes on that topology. 
 
Common Modeling Techniques 
 
Modeling an Embedded System 
 

 

Developing an embedded system is far more than a software problem. You have to manage the physical 
world in which there are moving parts that break and in which signals are noisy and behavior is nonlinear. 

When you model such a system, you have to take into account its interface with the real world, and that 

means reasoning about unusual devices, as well as nodes. 
 
 
Deployment diagrams are useful in facilitating the communication between your project's hardware 

engineers and software developers. By using nodes that are stereotyped to look like familiar devices, you 

can create diagrams that are understandable by both groups. Deployment diagrams are also helpful in 

reasoning about hardware/software trade-offs. You'll use deployment diagrams to visualize, specify, 

construct, and document your system engineering decisions. 
 
To model an embedded system, 
 

· Identify the devices and nodes that are unique to your system. 

 
· Provide visual cues, especially for unusual devices, by using the UML's extensibility 

mechanisms to define system-specific stereotypes with appropriate icons. At the very least, 
 

you'll want to distinguish processors (which contain software components) and devices 
(which, at that level of abstraction, don't directly contain software). 

 
· Model the relationships among these processors and devices in a deployment diagram. 

Similarly, specify the relationship between the components in your system's 
implementation view and the nodes in your system's deployment view. 

 
· As necessary, expand on any intelligent devices by modeling their structure with a more 

detailed deployment diagram. 

 
For example, Figure shows the hardware for a simple autonomous robot. You'll find one 
node (Pentium motherboard) stereotyped as a processor. 

 

Figure Modeling an Embedded System 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Surrounding this node are eight devices, each stereotyped as a device and rendered with an icon that 
offers a clear visual cue to its real-world equivalent. 
 
Modeling a Client/Server System 

 

The moment you start developing a system whose software no longer resides on a single processor, you 

are faced with a host of decisions: How do you best distribute your software components across these 

nodes? How do they communicate? How do you deal with failure and noise? At one end of the spectrum 

of distributed systems, you'll encounter client/server systems, in which there's a clear separation of 

concerns between the system's user interface (typically managed by the client) and its data (typically 

managed by the server). 
 
There are many variations on this theme. For example, you might choose to have a thin client, meaning 
that it has a limited amount of computational capacity and does little more than manage the user interface 
and visualization of information. Thin clients may not even host a lot of components but, rather, may be 

designed to load components from the server, as needed, as with Enterprise Java Beans. On the other hand, 
you might chose to have a thick client, meaning that it has a goodly amount of computational capacity and 
does more than just visualization. A thick client typically carries out some of the system's logic and 
business rules. The choice between thin and thick clients is an architectural decision that's influenced by a 

number of technical, economic, and political factors. 

 
Either way, partitioning a system into its client and server parts involves making some hard decisions 

about where to physically place its software components and how to impose a balanced distribution of 

responsibilities among those components. For example, most management information systems are 

essentially three-tier architectures, which means that the system's GUI, business logic, and database are 

physically distributed. Deciding where to place the system's GUI and database are usually fairly obvious, 

so the hard part lies in deciding where the business logic lives. 
 
You can use the UML's deployment diagrams to visualize, specify, and document your decisions about 
the topology of your client/server system and how its software components are distributed across the 
client and server. Typically, you'll want to create one deployment diagram for the system as a whole, 
along with other, more detailed, diagrams that drill down to individual segments of the system. 
 
To model a client/server system, 
 

· Identify the nodes that represent your system's client and server processors. 

 
· Highlight those devices that are germane to the behavior of your system. For example, you'll 

want to model special devices, such as credit card readers, badge readers, and display devices 
other than monitors, because their placement in the system's hardware topology are likely to be 
architecturally significant. 

 
· Provide visual cues for these processors and devices via stereotyping. 

 
· Model the topology of these nodes in a deployment diagram. Similarly, specify the 

relationship between the components in your system's implementation view and the 
nodes in your system's deployment view. 

 
 
For example, Figure shows the topology of a human resources system, which follows a classical 
client/server architecture. This figure illustrates the client/server split explicitly by using the packages 
named client and server. The client package contains two nodes (console and kiosk), both of which are 
stereotyped and are visually distinguishable. The server package contains two kinds of nodes (caching 
server and server), and both of these have been adorned with some of the components that reside on each. 
Note also that caching server and server are marked with explicit multiplicities, specifying how many 
instances of each are expected in a particular deployed configuration. For example, this diagram indicates 
that there may be two or more caching servers in any deployed instance of the system. 

 



Figure  Modeling a Client/Server System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling a Fully Distributed System 

 

Distributed systems come in many forms, from simple two-processor systems to those that span many 

geographically dispersed nodes. The latter are typically never static. Nodes are added and removed as 

network traffic changes and processors fail; new and faster communication paths may be established in 

parallel with older, slower channels that are eventually decommissioned. 

 

Not only may the topology of these systems change, but the distribution of their software components 
may change, as well. For example, database tables may be replicated across servers, only to be moved, 
as traffic dictates. For some global systems, components may follow the sun, migrating from server to 
server as the business day begins in one part of the world and ends in another. 
 
Visualizing, specifying, and documenting the topology of fully distributed systems such as these are 
valuable activities for the systems administrator, who must keep tabs on an enterprise's computing assets. 
You can use the UML's deployment diagrams to reason about the topology of such systems. When you 
document fully distributed systems using deployment diagrams, you'll want to expand on the details of 
the system's networking devices, each of which you can represent as a stereotyped node. 
 
To model a fully distributed system, 
 

· Identify the system's devices and processors as for simpler client/server systems. 

 
· If you need to reason about the performance of the system's network or the impact of changes 

to the network, be sure to model these communication devices to the level of detail sufficient 
to make these assessments. 

 
· Pay close attention to logical groupings of nodes, which you can specify by 

using packages. 
 

· Model these devices and processors using deployment diagrams. Where possible, use tools 
that discover the topology of your system by walking your system's network. 

 
· If you need to focus on the dynamics of your system, introduce use case diagrams to specify 

the kinds of behavior you are interested in, and expand on these use cases with interaction 
diagrams. 

 
 
Figure shows the topology of a fully distributed system. This particular deployment diagram is also an 

object diagram, for it contains only instances. You can see three consoles (anonymous instances of the 

stereotyped node console), which are linked to the Internet (clearly a singleton node). In turn, there are 

three instances of regional servers, which serve as front ends of country servers, only one of which is 

shown. As the note indicates, country servers are connected to one another, but their relationships are not 

 



shown in this diagram. 
 

Figure Modeling a Fully Distributed System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this diagram, the Internet has been reified as a stereotyped node. 
 
Forward and Reverse Engineering 

 

There's only a modest amount of forward engineering (the creation of code from models) that you can do 
with deployment diagrams. For example, after specifying the physical distribution of components across 
the nodes in a deployment diagram, it is possible to use tools that then push these components out to the 

real world. For system administrators, using the UML in this way helps you visualize what can be a very 
complicated task. 
 
Reverse engineering (the creation of models from code) from the real world back to deployment 

diagrams is of tremendous value, especially for fully distributed systems that are under constant change. 

You'll want to supply a set of stereotyped nodes that speak the language of your system's network 

administrators, in order to tailor the UML to their domain. The advantage of using the UML is that it 

offers a standard language that addresses not only their needs, but the needs of your project's software 

developers, as well. 
 
To reverse engineer a deployment diagram, 

 
· Choose the target that you want to reverse engineer. In some cases, you'll want to sweep 

across your entire network; in others, you can limit your search. 

 
· Choose also the fidelity of your reverse engineering. In some cases, it's sufficient to 

reverse engineer just to the level of all the system's processors; in others, you'll want to 
reverse engineer the system's networking peripherals, as well. 

 
· Use a tool that walks across your system, discovering its hardware topology. Record 

that topology in a deployment model. 
 

· Along the way, you can use similar tools to discover the components that live on each node, 
which you can also record in a deployment model. You'll want to use an intelligent search, for 
even a basic personal computer can contain gigabytes of components, many of which may not be 
relevant to your system. 

 
· Using your  modeling tools, create a deployment diagram by querying the model.    For  example, 

 
 



 
you might start with visualizing the basic client/server topology, then expand on the diagram by 
populating certain nodes with components of interest that live on them. Expose or hide the details 
of the contents of this deployment diagram as necessary to communicate your intent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 


