

Dept. of CS , RNLKWC Page 1

 B.Sc(H) Computer Science 6
th

 Semester

 Artificial Intelligence

 Topics

 Breadth First Search (BFS)

 Depth First Search (DFS)

 A-Star Search (A*)

 Minimax algorithm

 Alpha-beta pruning

Graph Traversal methods have always quite fascinated me. From performing

effective peer to peer communication to finding the nearest restaurants and cafes

using GPS, traversal methods have a varied set of applications in the real-world

scenario. In this blog on Breadth-First Search Algorithm, we will discuss the logic

behind graph traversal methods and use examples to understand the working of the

Breadth-First Search algorithm.

Introduction To Graph Traversal

The process of visiting and exploring a graph for processing is called graph

traversal. To be more specific it is all about visiting and exploring each vertex and

edge in a graph such that all the vertices are explored exactly once.

There are several graph traversal techniques such as Breadth-First Search, Depth

First Search and so on. The challenge is to use a graph traversal technique that is

most suitable for solving a particular problem. This brings us to the Breadth-First

Search technique.

Dept. of CS , RNLKWC Page 2

What is the Breadth-First Search Algorithm?

Breadth-First Search algorithm is a graph traversing technique, where you select

a random initial node (source or root node) and start traversing the graph layer-

wise in such a way that all the nodes and their respective children nodes are

visited and explored.

Before we move further and understand Breadth-First Search with an example,

let‘s get familiar with two important terms related to graph traversal:

Understanding the Breadth-First Search Algorithm with an example

Breadth-First Search algorithm follows a simple, level-based approach to solve a

problem. Consider the below binary tree (which is a graph). Our aim is to traverse

the graph by using the Breadth-First Search Algorithm.

Before we get started, you must be familiar with the main data structure involved

in the Breadth-First Search algorithm.

Dept. of CS , RNLKWC Page 3

A queue is an abstract data structure that follows the First-In-First-Out

methodology (data inserted first will be accessed first). It is open on both ends,

where one end is always used to insert data (enqueue) and the other is used to

remove data (dequeue).

Now let‘s take a look at the steps involved in traversing a graph by using Breadth-

First Search:

Step 1: Take an Empty Queue.

Step 2: Select a starting node (visiting a node) and insert it into the Queue.

Step 3: Provided that the Queue is not empty, extract the node from the Queue and

insert its child nodes (exploring a node) into the Queue.

Step 4: Print the extracted node.

Don‘t worry if you‘re confused, we shall understand this with an example.

Take a look at the below graph, we will use the Breadth-First Search algorithm to

traverse through the graph.

Dept. of CS , RNLKWC Page 4

In our case, we‘ll

assign node ‗a‘ as the root node and start traversing downward and follow the steps

mentioned above.

The above image depicts the end-to-end process of Breadth-First Search

Algorithm. Let me explain this in more depth.

1. Assign ‗a‘ as the root node and insert it into the Queue.

2. Extract node ‗a‘ from the queue and insert the child nodes of ‗a‘, i.e., ‗b‘ and

‗c‘.

Dept. of CS , RNLKWC Page 5

3. Print node ‗a‘.

4. The queue is not empty and has node ‗b‘ and ‗c‘. Since ‗b‘ is the first node

in the queue, let‘s extract it and insert the child nodes of ‗b‘, i.e., node ‗d‘

and ‗e‘.

5. Repeat these steps until the queue gets empty. Note that the nodes that are

already visited should not be added to the queue again.

Now let‘s look at the pseudocode of Breadth-First Search algorithm.

Breadth-First Search Algorithm Pseudocode

Here‘s the pseudocode to implement the Breadth-First Search Algorithm:

1. Input: s as the source node

2. BFS (G, s)

3. let Q be queue.

4. Q.enqueue(s)

5. mark s as visited

6. while (Q is not empty)

7. v = Q.dequeue()

8. for all neighbors w of v in Graph G

9. if w is not visited

10. Q.enqueue(w)

11. mark w as visited

In the above code, the following steps are executed:

1. (G, s) is input, here G is the graph and s is the root node

2. A queue ‗Q‘ is created and initialized with the source node ‗s‘

3. All child nodes of ‗s‘ are marked

Dept. of CS , RNLKWC Page 6

4. Extract ‗s‘ from queue and visit the child nodes

5. Process all the child nodes of v

6. Stores w (child nodes) in Q to further visit its child nodes

7. Continue till ‗Q‘ is empty

Before we wrap up the blog, let‘s look at some applications of Breadth-First

Search algorithm.

Applications Of Breadth-First Search Algorithm

Breadth-first Search is a simple graph traversal method that has a surprising range

of applications. Here are a few interesting ways in which Bread-First Search is

being used:

Crawlers in Search Engines: Breadth-First Search is one of the main algorithms

used for indexing web pages. The algorithm starts traversing from the source page

and follows all the links associated with the page. Here each web page will be

considered as a node in a graph.

GPS Navigation systems: Breadth-First Search is one of the best algorithms used

to find neighboring locations by using the GPS system.

Find the Shortest Path & Minimum Spanning Tree for an unweighted

graph: When it comes to an unweighted graph, calculating the shortest path is

quite simple since the idea behind shortest path is to choose a path with the least

number of edges. Breadth-First Search can allow this by traversing a minimum

number of nodes starting from the source node. Similarly, for a spanning tree, we

can use either of the two, Breadth-First Search or Depth-first traversal methods to

find a spanning tree.

Broadcasting: Networking makes use of what we call as packets for

communication. These packets follow a traversal method to reach various

networking nodes. One of the most commonly used traversal methods is Breadth-

First Search. It is being used as an algorithm that is used to communicate

broadcasted packets across all the nodes in a network.

Dept. of CS , RNLKWC Page 7

References:

A* Search

 Reaching a destination via the shortest route is a daily activity we all do. A-

star (also referred to as A*) is one of the most successful search algorithms to find

the shortest path between nodes or graphs. It is an informed search algorithm, as it

uses information about path cost and also uses heuristics to find the solution.

 A* achieve optimality and completeness, two valuable property of search

algorithms.

When a search algorithm has the property of optimality, it means it

is guaranteed to find the best possible solution. When a search algorithm has the

property of completeness, it means that if a solution to a given problem exists, the

algorithm is guaranteed to find it.

What is A* Search Algorithm?

A* Search algorithm is one of the best and popular technique used in path-finding

and graph traversals.

Why A* Search Algorithm ?

Informally speaking, A* Search algorithms, unlike other traversal techniques, it

has ―brains‖. What it means is that it is really a smart algorithm which separates it

from the other conventional algorithms. This fact is cleared in detail in below

sections.

And it is also worth mentioning that many games and web-based maps use this

algorithm to find the shortest path very efficiently (approximation).

https://en.wikipedia.org/wiki/Heuristic_(computer_science)

Dept. of CS , RNLKWC Page 8

To approximate the shortest path in real-life situations, like- in maps, games where

there can be many hindrances.

 We can consider a 2D Grid having several obstacles and we start from a

source cell (coloured red below) to reach towards a goal cell (coloured green

below)

 Now to understand how A* works, first we need to understand a few

terminologies:

 Node (also called State) — All potential position or stops with a unique

identification

 Transition — The act of moving between states or nodes.

 Starting Node — Whereto start searching

 Goal Node — The target to stop searching.

Dept. of CS , RNLKWC Page 9

 Search Space — A collection of nodes, like all board positions of a board

game

 Cost — Numerical value (say distance, time, or financial expense) for the

path from a node to another node.

 g(n) — this represents the exact cost of the path from the starting node to

any node n

 h(n) — this represents the heuristic estimated cost from node n to the goal

node.

 f(n) — lowest cost in the neighboring node n

Each time A* enters a node, it calculates the cost, f(n)(n being the neighboring

node), to travel to all of the neighboring nodes, and then enters the node with the

lowest value of f(n).

These values we calculate using the following formula:

f(n) = g(n) + h(n)

Explanation

Consider a square grid having many obstacles and we are given a starting cell and

a target cell. We want to reach the target cell (if possible) from the starting cell as

quickly as possible. Here A* Search Algorithm comes to the rescue.

What A* Search Algorithm does is that at each step it picks the node according to

a value-‗f‘ which is a parameter equal to the sum of two other parameters – ‗g‘ and

‗h‘. At each step it picks the node/cell having the lowest ‗f‘, and process that

node/cell.

We define ‗g‘ and ‗h‘ as simply as possible below

g = the movement cost to move from the starting point to a given square on the

grid, following the path generated to get there.

h = the estimated movement cost to move from that given square on the grid to the

final destination. This is often referred to as the heuristic, which is nothing but a

kind of smart guess. We really don‘t know the actual distance until we find the

path, because all sorts of things can be in the way (walls, water, etc.). There can be

many ways to calculate this ‗h‘ which are discussed in the later sections.

Dept. of CS , RNLKWC Page 10

Algorithm

We create two lists – Open List and Closed List (just like Dijkstra Algorithm)

// A* Search Algorithm

1. Initialize the open list

2. Initialize the closed list

 put the starting node on the open

 list (you can leave its f at zero)

3. while the open list is not empty

 a) find the node with the least f on

 the open list, call it "q"

 b) pop q off the open list

 c) generate q's 8 successors and set their

 parents to q

 d) for each successor

 i) if successor is the goal, stop search

 successor.g = q.g + distance between

 successor and q

 successor.h = distance from goal to

 successor (This can be done using many

 ways, we will discuss three heuristics-

 Manhattan, Diagonal and Euclidean

 Heuristics)

 successor.f = successor.g + successor.h

 ii) if a node with the same position as

 successor is in the OPEN list which has a

 lower f than successor, skip this successor

 iii) if a node with the same position as

 successor is in the CLOSED list which has

 a lower f than successor, skip this successor

Dept. of CS , RNLKWC Page 11

 otherwise, add the node to the open list

 end (for loop)

 e) push q on the closed list

 end (while loop)

Dept. of CS , RNLKWC Page 12

Dept. of CS , RNLKWC Page 13

Dept. of CS , RNLKWC Page 14

Dept. of CS , RNLKWC Page 15

Dept. of CS , RNLKWC Page 16

Dept. of CS , RNLKWC Page 17

Dept. of CS , RNLKWC Page 18

Dept. of CS , RNLKWC Page 19

Reference

https://www.edureka.co/blog/a-search-algorithm/

https://towardsdatascience.com/a-star-a-search-algorithm-eb495fb156bb

https://www.edureka.co/blog/a-search-algorithm/
https://towardsdatascience.com/a-star-a-search-algorithm-eb495fb156bb

Dept. of CS , RNLKWC Page 20

What is the Minimax algorithm?

Minimax is a recursive algorithm which is used to choose an optimal move for a player assuming

that the other player is also playing optimally.

It is used in games such as tic-tac-toe, go, chess, Isola, checkers, and many other two-player
games.

Such games are called games of perfect information because it is possible to see all the possible

moves of a particular game.

There can be two-player games which are not of perfect information such as Scrabble because
the opponent‘s move cannot be predicted.

It is similar to how we think when we play a game: ―if I make this move, then my opponent can
only make only these moves,‖ and so on.

Minimax is called so because it helps in minimizing the loss when the other player chooses the

strategy having the maximum loss.

Terminology

 Game Tree: It is a structure in the form of a tree consisting of all the

possible moves which allow you to move from a state of the game to

the next state.

A game can be defined as a search problem with the following components:

 Initial state: It comprises the position of the board and showing whose

move it is.
 Successor function: It defines what the legal moves a player can make

are.

 Terminal state: It is the position of the board when the game gets over.

 Utility function: It is a function which assigns a numeric value for the

outcome of a game. For instance, in chess or tic-tac-toe, the outcome is

Dept. of CS , RNLKWC Page 21

either a win, a loss, or a draw, and these can be represented by the

values +1, -1, or 0, respectively. There are games that have a much

larger range of possible outcomes; for instance, the utilities in

backgammon varies from +192 to -192. A utility function can also be
called a payoff function.

How does the algorithm work?

There are two players involved in a game, called MIN and MAX. The player MAX

tries to get the highest possible score and MIN tries to get the lowest possible

score, i.e., MIN and MAX try to act opposite of each other.

The general process of the Minimax algorithm is as follows:

Step 1: First, generate the entire game tree starting with the current position of the

game all the way upto the terminal states. This is how the game tree looks like for

the game tic-tac-toe.

Dept. of CS , RNLKWC Page 22

Let us understand the defined terminology in terms of the diagram above.

1. The initial state is the first layer that defines that the board is blank it‘s

MAX‘s turn to play.

2. Successor function lists all the possible successor moves. It is defined for all

the layers in the tree.

3. Terminal State is the last layer of the tree that shows the final state, i.e

whether the player MAX wins, loses, or ties with the opponent.

4. Utilities in this case for the terminal states are 1, 0, and -1 as discussed

earlier, and they can be used to determine the utilities of the other

nodes as well.

Dept. of CS , RNLKWC Page 23

Step 2: Apply the utility function to get the utility values for all the terminal

states.

Step 3: Determine the utilities of the higher nodes with the help of the

utilities of the terminal nodes. For instance, in the diagram below, we have

the utilities for the terminal states written in the squares.

Dept. of CS , RNLKWC Page 24

Let us calculate the utility for the left node(red) of the layer above the

terminal. Since it is the move of the player MIN, we will choose the

minimum of all the utilities. For this case, we have to evaluate MIN{3, 5,

10}, which we know is certainly 3. So the utility for the red node is 3.

Dept. of CS , RNLKWC Page 25

Similarly, for the green node in the same layer, we will have to evaluate

MIN{2,2} which is 2.

Step 4: Calculate the utility values with the help of leaves considering one

layer at a time until the root of the tree.

Dept. of CS , RNLKWC Page 26

Step 5: Eventually, all the backed-up values reach to the root of the tree, i.e., the topmost point.

At that point, MAX has to choose the highest value.

In our example, we only have 3 layers so we immediately reached to the root but in actual

games, there will be many more layers and nodes. So we have to evaluate MAX{3,2} which is 3.

Therefore, the best opening move for MAX is the left node(or the red one). This move is called

the minimax decision as it maximizes the utility following the assumption that the opponent is

also playing optimally to minimize it.

To summarize,

Minimax Decision = MAX{MIN{3,5,10},MIN{2,2}}

= MAX{3,2}

= 3

function minimax(node, depth, maximizingPlayer)
 if depth = 0 or node is a terminal node

 return the utility of the node

 if maximizingPlayer

 bestValue := ??

 for each child of node

 v := minimax(child, depth ? 1, FALSE)

 bestValue := max(bestValue, v)

 return bestValue

 else (* minimizing player *)
 bestValue := +?

 for each child of node

 v := minimax(child, depth ? 1, TRUE)

 bestValue := min(bestValue, v)

 return bestValue

Dept. of CS , RNLKWC Page 27

Alpha-beta pruning

The method that we are going to look in this article is called alpha-beta

pruning.

If we apply alpha-beta pruning to a standard minimax algorithm, it returns the

same move as the standard one, but it removes (prunes) all the nodes that are

possibly not affecting the final decision.

Let us understand the intuition behind this first and then we will formalize the

algorithm. Suppose, we have the following game tree:

In this case,

Minimax Decision = MAX{MIN{3,5,10}, MIN{2,a,b}, MIN{2,7,3}}

Dept. of CS , RNLKWC Page 28

= MAX{3,c,2}

= 3

How could we calculate the maximum with a missing value? Here is the

trick. MIN{2,a,b} would certainly be less than or equal to 2, i.e., c<=2 and

hence MAX{3,c,2} has to be 3.

The question now is do we really need to calculate c? Of course not.

We could have reached a conclusion without looking at those nodes. And this

is where alpha-beta pruning comes into the picture.

A few definitions:

Alpha: It is the best choice so far for the player MAX. We want to get the highest

possible value here.

Beta: It is the best choice so far for MIN, and it has to be the lowest possible

value.

Note: Each node has to keep track of its alpha and beta values. Alpha can be

updated only when it‘s MAX‘s turn and, similarly, beta can be updated only when

it‘s MIN‘s chance.

How does alpha-beta pruning work?

1. Initialize alpha = -infinity and beta = infinity as the worst possible cases.

The condition to prune a node is when alpha becomes greater than or equal

to beta.

Dept. of CS , RNLKWC Page 29

1. Start with assigning the initial values of alpha and beta to root and since

alpha is less than beta we don‘t prune it.

2. Carry these values of alpha and beta to the child node on the left. And now

from the utility value of the terminal state, we will update the values of alpha

and be, so we don‘t have to update the value of beta. Again, we don‘t prune

because the condition remains the same. Similarly, the third child node also.

And then backtracking to the root we set alpha=3 because that is the

minimum value that alpha can have.

Dept. of CS , RNLKWC Page 30

1. Now, alpha=3 and beta=infinity at the root. So, we don‘t prune. Carrying

this to the center node, and calculating MIN{2, infinity}, we get alpha=3 and

beta=2.

2. Prune the second and third child nodes because alpha is now greater than

beta.

3. Alpha at the root remains 3 because it is greater than 2. Carrying this to the

rightmost child node, evaluate MIN{infinity,2}=2. Update beta to 2 and

alpha remains 3.

4. Prune the second and third child nodes because alpha is now greater than

beta.

5. Hence, we get 3, 2, 2 at the left, center, and right MIN nodes, respectively.

And calculating MAX{3,2,2}, we get 3. Therefore, without even looking at

four leaves we could correctly find the minimax decision.

Pseudocode:

evaluate (node, alpha, beta)

 if node is a leaf

 return the utility value of node

 if node is a minimizing node

 for each child of node

 beta = min (beta, evaluate (child, alpha, beta))

 if beta <= alpha

 return beta

 return beta

Dept. of CS , RNLKWC Page 31

 if node is a maximizing node

 for each child of node

 alpha = max (alpha, evaluate (child, alpha, beta))

 if beta <= alpha

 return alpha

 return alpha

References:

http://nptel.ac.in/courses/106105078/8

