
Artificial Intelligence Lab

Computer Science PG Study Material
Paper: CS-491

Part-II: List Operations

Anupam Pattanayak1

Assistant Professor,
Department of Computer Science,

Raja N. L. Khan Women’s College (Autonomous),
Midnapore, West Bengal

April 20, 2020

1anupam.pk@gmail.com

ii

Contents

1 Prolog Programs - II 1
1.1 List Basics . 2
1.2 Built-in List Predicates . 2

1.2.1 Unification . 2
1.2.2 Member . 3
1.2.3 Length . 4
1.2.4 Subset . 4
1.2.5 Append . 4
1.2.6 Reverse . 5
1.2.7 Sorting . 5

1.3 Program to Find Union of Two Lists 5
1.4 Program to Search in a List 6
1.5 Program to Check for Palindrome 7
1.6 Program to Find Maximum 8

iii

iv CONTENTS

1

Prolog Programs - II

We will now see processing of lists. List is a recursive data structure which
allows inclusion of diverse objects for knowledge representation. A list is
finite sequence of items. We use the swipl in Linux.

Now we will learn the following:

I. To check if an item is member of a list,

II. To find a set is subset of another set,

III. To find length of a list

IV. To reverse a list,

VI. To concatenate two lists,

VII. To sort a list,

VIII. To find union of two lists,

IX. To search for an item in a list,

X. To check if a string is palindrome, and

XI. To find maximum of a list of numbers.

we will refer the book by Brakto1, and the book by Bramer2 for our pro-
grams. We use the swipl in Linux. All these programs have been cheked in
my system.

1Prolog Programming for Artificial Intelligence by Ivan Bratko
2Logic Programming with Prolog by Max Bramer

1

2 1. PROLOG PROGRAMS - II

1.1 List Basics
We will first see some example of lists, as given below:
[Ishan]
[X, Y]
[10, 20, 30, 40]
[A, 5, 6, W, Z]
[Arun, Barun, Harun, Karun, Tarun]
[Subhalakshmi, Padmalakshmi, [Muthulakshhmi, Rangalakshmi], Ishithalakshmi]
[]
See the last list - it is empty list. The more interesting is the second last
example - recursive list. The very first element in the list is referred as head.
The subsequent items of the list constitute tail (or, body) of the list. For the
first example of lists above, [Ishan] can be interpreted as [Ishan, []] where
[Ishan] is the head, and [] is the tail.

With the lists we can do lot of operations such as insertion, deletion,
unification, append, search, and sort.

1.2 Built-in List Predicates
Here, we will see use of some built-in predicates of Prolog for list processing.

1.2.1 Unification
The symbol | is used for unification of lists. It specifies head and tail of the
unified list. Run the following commands in swipl.

?− X=[Arun , Barun , Karun] , Y=[Tarun |X] .

Observe the output, as shown below.
X = [Arun , Barun , Karun] ,
Y = [Tarun , Arun , Barun , Karun] .

?−

1.2. BUILT-IN LIST PREDICATES 3

Take another example. Suppose, we have two lists:
[Sarasvati, Puri, Bharati, Giri, T irtha] and
[Sagara, Aranya, Ashrama, Parvata, V ana]
We want to unify these two lists. So, we run the following in the swipl
command prompt.
?− X=[Sarasvat i , Puri , Bharati , Gir i , Tirtha] , Y=[Sagara , Aranya

, Ashrama , Parvata , Vana] , W=[X|Y] .

Observe the output carefully, as shown below.
X = [Sarasvat i , Puri , Bharati , Gir i , Tirtha] ,
Y = [Sagara , Aranya , Ashrama , Parvata , Vana] ,
W = [[Sarasvat i , Puri , Bharati , Gir i , Tirtha] , Sagara , Aranya ,

Ashrama , Parvata , Vana] .

?−

1.2.2 Member
This predicate checks if the first argument is a member of the list specified
in second argument. For example, see the following
?− member (1 , [1 , 1 2 , 2 5]) .
t rue .

Since, 1 is a member of [1, 12, 25] the member predicate returns true. Note
that, we have used · to terminate. If we had used ; to see further output, we
get the following:
?− member (1 , [1 , 1 2 , 2 5]) .
t rue ;
f a l s e .

Now, observe the following example:
?− member (1 0 , [1 , 1 0 , 2 , 1 5 , 1 0 , 2 5]) .
t rue ;
t rue ;
f a l s e .

4 1. PROLOG PROGRAMS - II

Since, the item 10 is present more than once, we are getting true twice. Note,
we have to press ; when the output is awaiting action from our end. Pressing
the Enter key or · will show just one true.

1.2.3 Length
It gives the number of elements a list contains. The built-in predicate length
accepts two arguments. The first argument is a list and the second argument
is an unbound variable that gets bounded to the length of list. we give the
following in the swipl command prompt to get length of a list.
?− l ength ([1 , 1 0 , 2 , 1 5 , 1 0 , 2 5] ,X) .
X = 6 .

?−

1.2.4 Subset
It checks if a list is a subset of another given list. This built-in predicate
subset accepts two arguments. The first argument is a list that we want to
check if it is a subset of the list specified in second argument. It’s usage is
illustrated in the following.
?− subset ([1 5 , 2 5] , [1 0 , 2 , 1 5 , 1 0 , 2 5]) .
t rue .

?−

1.2.5 Append
It appends a list after another. That is it concatenates two lists. This built-in
predicate append accepts three arguments. The first two arguments are the
lists that are to be concatenated. Third argument is an unbound variable
that gets bounded to the concaatenated list. It’s usage is illustrated in the
following.
?− append ([1 5 , 2 5 , 3 5] , [1 0 , 2 , 2 0 , 3 0 , 3 5] ,A) .
A = [15 , 25 , 35 , 10 , 2 , 20 , 30 , 3 5] .

?−

1.3. PROGRAM TO FIND UNION OF TWO LISTS 5

1.2.6 Reverse
It reverses a list. The built-in predicate revers accepts two arguments. The
first argument is a list that we want to reverse. The second argument is an
unbound variable that gets bounded to the reverse of the list specified in the
first argument. It’s usage is shown in the following.
?− r e v e r s e ([1 5 , 2 5 , 3 5] ,A) .
A = [35 , 25 , 1 5] .

?−

1.2.7 Sorting
There is a built-in predicate sort/2, that is, sort predicate with two argu-
ments. First argument is the list. Second one is an unbound variable that
keeps the sorted result. It’s usage is shown below.

?− s o r t ([1 0 , 5 , 210 , 15 , 80 , 39 , 6 8] ,L) .
L = [5 , 10 , 15 , 39 , 68 , 80 , 2 1 0] .

?−

1.3 Program to Find Union of Two Lists
We are quite aware of set theoretic union operation. Union of two lists
[1,10,12] and [2,12,15,18] is [1,10,12,2,12,15,18]. Following program shows
the code for finding union of two lists.
% Finds union o f two l i s t s
% F i l e name : union . p l

union ([] ,X, X) .
union ([X|R] , Y, Z) :− member(X, Y) , ! , union (R, Y, Z) .
union ([X|R] , Y, [X| Z]) :− union (R, Y, Z) .

6 1. PROLOG PROGRAMS - II

Now we compile the program union.pl and execute it. A sample execution
is shown below.
?− consu l t (’ union . p l ’) .
% union . p l compiled 0 .00 sec , 1 c l a u s e s
t rue .

?− union ([1 2 , 3 0 , 4 5] , [1 5 , 2 5 , 3 5] ,A) .
A = [12 , 30 , 45 , 15 , 25 , 3 5] .

?−

1.4 Program to Search in a List
We now see the code for searching in a list, as given below.
% Fi l e name : s rch . p l

search (A, [A|_]) :− wr i t e (’ Su c c e s s f u l Search ’) .
s earch (A, [_|B]) :− search (A,B) .

Now we compile the program union.pl and execute it. Few sample executions
are shown below.
?− consu l t (’ s rch . p l ’) .
% srch . p l compiled 0 .00 sec , 3 c l a u s e s
t rue .

?− search (25 , [1 5 , 2 5 , 3 5 , 4 5 , 6 0]) .
Su c c e s s f u l Search
true .

?− search (20 , [1 5 , 2 5 , 3 5 , 4 5 , 6 0]) .
f a l s e .

?− search (25 , [1 5 , 2 5 , 3 5 , 4 5 , 6 0]) .
Su c c e s s f u l Search
true .

?− search (25 , [1 5 , 2 5 , 35 , 4 5 , 60 , 2 5 , 65]) .
Su c c e s s f u l Search
true ;
Su c c e s s f u l Search

1.5. PROGRAM TO CHECK FOR PALINDROME 7

t rue ;
f a l s e .

?−

Observe the last execution. It shows true for every time the search result
is successful. To prevent this, we can modify the program as shown below.
That is, it will display Search Successful just once.
% Fi l e name : search1 . p l

search (A, [A|_]) :− wr i t e (’ Su c c e s s f u l Search ’) , ! .
s earch (A, [_|B]) :− search (A,B) .

Compile this program and execute it. See the output.

1.5 Program to Check for Palindrome
Following program checks if a given string is palindrome or not. We all
know that a string is palindrome if it is same from forward as well as from
backward.
% Checks i f a s t r i n g i s pal indrome
% F i l e name : pa l in1 . p l

pal indrome (X) :− r e v e r s e (X,X) .
%r ev e r s e ([] , []) .
%r ev e r s e ([X1 |Y) ,R) :− r e v e r s e (Y,Y1) , conc (Y1 , [X1] ,R) .

Following shows the compilation and sample executions of it.
?− consu l t (’ pa l i n1 . p l ’) .
% pa l in1 . p l compiled 0 .00 sec , 1 c l a u s e s
t rue .

?− palindrome (" 2002 ") .
t rue .

?− palindrome ("malayalam ") .
t rue .

?− palindrome (" 2020 ") .
f a l s e .

8 1. PROLOG PROGRAMS - II

?−

1.6 Program to Find Maximum
Following program finds maximum from a list.
% Finds maximum of a l i s t
% F i l e name : l a r g e s t . p l

max ([X| L i s t] , Maxval) :− find_max (List , Maxval ,X) .
find_max ([] , Cur_max ,Cur_max) .
find_max ([A|L] , Maxval ,Cur_max) :− A>Cur_max , find_max (L , Maxval ,A)

.
find_max ([A|L] , Maxval ,Cur_max) :− A=<Cur_max , find_max (L , Maxval ,

Cur_max) .

Following shows the compilation and sample execution of it.
?− consu l t (’ l a r g e s t . p l ’) .
% l a r g e s t . p l compiled 0 .00 sec , 5 c l a u s e s
t rue .

?− max([1 0 , 5 , 21 , 15 , 80 , 39 , 68] ,N) .
N = 80

?−

	Prolog Programs - II
	List Basics
	Built-in List Predicates
	Unification
	Member
	Length
	Subset
	Append
	Reverse
	Sorting

	Program to Find Union of Two Lists
	Program to Search in a List
	Program to Check for Palindrome
	Program to Find Maximum

