.2. SIMPLEST LINEAR MODEL OF THERMOCLINE

\)d The temperature (and likewise salinity and density) field in the ocean has
one clearly pronounced feature: practically all temperature changes (in ver-



tical as well as horizontal directions) are concentrated in the upper kilometre
laver which 1s usually referred to as main thermocline or simply as thermo-
cline (Fig. 7.2). The bottom thickness of the water of the ocean (below the
thermocline) has almost constant temperature which, in essence, does m,i
glopond on the thermal conditions at the surface of the ocean. Such a pattern
is true for the entire world ocean, except, may be, in high latitudes. Starting
from general reasoning, it may be assumed that the thermocline is nothing
else but a specific thermal boundary layer of the ocean. It 1s the task of
theory to explain, first of all, the parameters on which the charactenstic
thickness of this boundary layer depends. Besides, the existence of a thermal
boundary layer in the open ocean raises naturally a number of new problems
also for the theory of coastal boundary currents. It has already been shown
in the last section how complicated the structure of coastal boundary layers
becomes (even in the case of a homogeneous ocean) when one steps over
from two-dimensional to three-dimensional models.

A start will be made with the simplest possible model. Assume that there
is no wind, i.e., the motion is due to purely thermal causes. However, then
one need not take into consideration vertical turbulent exchange (at least,
outside the bottom Ekman boundary layer). Disregard also non-linear iner-
tial terms and horizontal turbulent transfer; for the sake of simplicity,
restrict consideration to the -plane approximation, so that

—fu = _pl_o g_g' (7.2.1)
fu= -*;—o % : (7.2.2)
%zgp , (7.2.3)
%+%+%‘§=0, | (7.2.4)

where, as usually, the x-axis is directed to the east, the y-axis to the north,
the z-axis downwards, p, is the mean density in the ocean, f=fo+B( —Yo)
and the remaining notation is as before.

It will be assumed that the density depends only on the temperature, and

besides linearly, so that

p=poll —a(T—To)], _
where T, is the temperature averaged over the entire ocean and « the con-
stant coefficient of thermal expansion.

The equation of heat transfer is non-linear, and this fact is the cause of
basic difficulties encountered in the construction of a theory. As a first step,

linearization will be introduced (the non-linear theory will be considered in'
LW .
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(7.2.5)
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T =60(), =0 forz=0 (7.2.8)

where 0(v) is a known function (tl
Yl - ne temperature at the surfa f th g
changes chiefly in a meridional direction). | e o me o
Let 1;1 be afssume_d that there is no perturbation of the temperature at the
ocean floor for z = H. Furthermore, since vertical turbulent exchange ha
been neglec-ted in the equations of motion, one may impose at the botton
only a condition of no flow. Thus,

’

T'=0, w =0 forz=H. (7.2.9'

A formulation of boundary conditions at shores which are assumed to b
sheer cliffs is very specific. In general, there is no heat flux at a shore (fo
example, forx =0and x = L) and the horizontal velocity must also vanish. How
ever, since horizontal turbulent exchange is absent from the equations o
motion as well as are non-linear terms, one is forced to forget about fulfill
ment of all conditions at the shore. Clearly, it is impossible to violate the nc
flow condition: The total mass of fluid in the basin must remain constan
However, if, for example, one has u = 0 for x = 0, then, by (7.2.2), op/3y
0, which means, by (7.2.3) and (7.2.5), that also 3T [3y = 0 for x = 0. There

fore it will be simplest to write
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Eliminating from (7.2.1) and (7.2.2) the pressure p and employing (7.2.4)
one obtains

"lv - {E ey

P 5 (7.2.11)
Differentiating this equation with respect to z and taking (7.2.3) and (7.2.5)
into account, one finds

ﬁ)f},‘_‘ = —-gc_lﬁ aT'

0z 2 ox

Finally, substituting into this equation, in accordance with (7.2.7), the
expression for w in terms of T, one obtains

.ot 2T'\ gafG oT"
K K A,(———)-— — =0. Tl
HaZ4 L= ) f2 % ‘ 0 (( Z 12)
Conditions (7.2.8), (7.2.9) and (7.2.10) will now be rewritten so that they
only involve the temperature perturbation T

~
<

I'=00), Ky *KMT =0 forz=0,
Z
’ r a2T' > !
d =O,A”€:*2' +ALAhT =0 . 'f0r2=H,
=0 forx =0, T' =0 forx=1L. (7.2.13)

Thus, the study of the thermal boundary layer has been reduced to anal-
ysis of the problem (7.2.12) and (7.2.13). These equations will now be
written in non-dimensional form.

Choose L and H as characteristic scales in horizontal and vertical direc-
tions, respectively. Let 64 be the characteristic value of the function 6(y); it
will be quite natural to adopt 6 as characteristic scale for T'. Writing (7.2.
12) and (7.2.13) in terms of non-dimensional quantities (denoted below by

the former symbols), one obtains

T a“T 1 oT _

4 + 4A (—_—) B . —.0,
Cat M) o)

cay EL vaAT =0  forz=0 (7.2.14
T - (y) ’ 822 7 h or z ) e )

2
T'=0, %%—+7A,.T'=o forz=1,
Z

7'=0  forx=0, T'=0  forx=1, (7.2.15)



where
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If K;;=1 em?/sec, K, =107 cm?/sec, H=4 km, L = 5000 km, a = 2.5 -
1074 (°C)-t, G =10 (°C)/cm, then vy=6, Hy = 0.3 km. € = 0.08. These
estimates are very approximate; however, it will be assumed in the sequel
that the parameter vy is finite and the parameter ¢ small. The asymptotic of
the solution of problem (7.2.14) and (7.2.15) for small ¢ vields completelv
satisfactory understanding of the peculiarities of the solution of the problem
also for not verv small €.

It i1s already clear, starting from these considerations, that the internal
characteristic scale H, gives the order of magnitude of the thickness of the
thermal boundary layer, or of the thermocline, in the ocean. Therefore it
may be assumed that qualitatively the model under consideration actually
describes the effect of formation of the thermal boundary layer in the ocean.
The structure of the boundary layers will now be studied in greater detail.

The temperature perturbation 7' outside the boundary layers vanishes
according to (7.2.14) and (7.2.15) (internal solution). Obviously, the non-
dimensional thickness of the thermal boundary layer is of order €. It is not
difficult to determine also the order of the non-dimensional thickness of the
coastal boundary layer O(e?) from the condition that the terms
ve*A, (82T /32%) and 3T '/dx must be of equal order of magnitude. Thus, the
solution of Problems (7.2.14) and (7.2.15) outside the boundary layers at
zonal boundaries will be sought in the form

T' . Ts(x’ M. E) W TH'({’ Y, E) T oy T TE(na X E) * .. ’

where £ = z/e, { = x/e?, n = (1 — x)/e? and all functions T, Ty, Tr must

decay exponentially for large £, ¢ and 7. _
Substitution of (7.2.17) into (7.2.14) and (7.2.15) leads to the relations

(7.2.1G)

(7.2.17)

4
aTS-—1(15=0, 0<x<1, £>0, _ (7.2.18)
akt  f? oax
02T -
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T, =6(y) o
VMTW--%§E=O, £,$>0, (7.2.20)
ot%as® % 0
T5+T“'=O f0r§’=0, (72.21)
Ty = for£ =0, (7.2.22)
i - '
'ﬁqE +ia—&=0, £,n>0, (7.2.20")




T .+7T, =0 forn=0,

oLyt

7,=0 for£=0.

A start will be made with problems (7.2.18) and (7.2.19). Introduce the

. e » ] C
Fourier sine transform with respect to &

7\“\ = f T.sin(&o) d& .
0

Then, by (7.2.18) and (7.2.19), one obtains for T, the equation
0

. 19T,
o*T,—0%0 (y) —= — =0,
' Foipn

with the solution

;fs = A(y) e + % 0(y), (7.2.23)

where the function 4(y) must still be determined. ’

For solution of problems (7.2.20)—(7.2.22) and (7.2.20")—(7.2.22'), the
Fourier sine transform will again be employed. After single _integratlons’ with
respect to ¢ and 7, respectively, one obtains from (7.2.20) and (7.2.20") the
equations

w .z = (7.2.24)

o a E £y - ]
_fZU-’YW-F TE=O- (/224)
Equation (7.2.24") has no non-zero solution which decays exponentially
for large n. However, then the function T likewise vanishes identically, and,

by (7.2.21"), one finds that Ts(l, y, £) = 0; hence the function A(y) entering
into (7.2.23) has been determined, and

P = ?%'_) {1 —exp[—(1 —x) f20*]} (7.2.25)

or, reverting to the original function,

WX o T s gy e s ) E 2
Ts=261(r3,)nf 1 —exp| ((17 X)) Stk de (7.2.26)

The substitution 0 = 7£1/3(1 — x)7 /3 reduces (7.2.26) to the form

il R UL 2. 4
_20(y) f 1 —exp(—xf“r )Sm(x',) dr (7.2.27)
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gl vl g, el i of’th 1S nobt difficult to establish qualitatively the behav-
has T' = Ti(x, ¥) Therefe Proh lerp. Out;,51de the westem l?oupdar}' layer, one
e s lisne;, .X : e ore the 1H1nes T' = constant coincide in the x, z-'plane

. y ant. By (7.2.28), these curves are given by the simple
ﬁQLlElthl] e =,Constant (1 —x), according to which all lines x = constant
s out of’ the point x = 1, z = 0. The “correction” function 7y({, ¥, &)
‘turns upwards’’ these curves within the limits of a western boundary layer
and forces them “into” the point x = 0, z = 0 (Fig. 7.3 on p. 202).

Thus, due to the B-effect, the pattern of the curves T = constant 1s
sharply ‘asymmetric with respect to the plane x = 1/2, although the motion
generating factor 6(y) does not at all depend on x. This phenomenon has
already been encountered repeatedly.

The width of the western boundary layer is here overestimated (for the
adopted values of the determining parameters, of order 200 km). However,
recall again that the problem under consideration only bears a qualitative
character. Besides, in essence, the parameter G has been introduced solely
for linearization of the problem; for a real ocean, its estimate is very indefi-
nite. In general, linearization of the equation of heat transfer introduces a
series of artificial aspects. For example, since practically there does not
occur below the thermal boundary layer a change in temperature, the verti-
cal velocity w, by (7.2.7), will likewise be equal to zero there, and conse-
quently also the horizontal velocity will vanish [cf., for example, (7.2.11)].
It is important to emphasize that this result follows from (7.2.7) and it does
not depend on the form of the other equations. If one admits that the quan-
tity G is not constant, then the basic state T = T(z) will not satisfy the equa-
tion of heat transfer with constant exchange coefficients and the method of
perturbations will then not be very sensible. All this suggests the necessity of

studying non-linear models.



