Introduction

In many situations a modeler is unable to construct an analytic (symbolic) model
adequately explaining the behavior being observed because of its complexity or
the intractability of the proposed explicative model. Yet if it is necessary to make
predictions about the behavior, the modeler may conduct experiments (or gather
data) to investigate the relationship between the dependent variable(s) and selected
values of the independent variable(s) within some range. We constructed empirical
models based on collected data in Chapter 4. To collect the data, the modeler may
observe the behavior directly. In other instances, the behavior might be duplicated
(possibly in a scaled-down version) under controlled conditions, as will be done
when predicting the size of craters in Section 8.4.

In some circumstances, it may not be feasible either to observe the behavior
directly or to conduct experiments. For instance, consider the service provided by
a system of elevators during moming rush hour. After identifying an appropriate
problem and defining what is meant by good service, we might suggest some al-
ternative delivery schemes, such as assigning elevators to even and odd floors or
using express elevators. Theoretically, each alternative could be tested for some
period of time to determine which one provided the best service for particular ar-
rival and destination patterns of the customers. However, such a procedure would
probably be very disruptive because it would be necessary to harass the customers
constantly as the required statistics are collected. Moreover, the customers would
become very confused because the elevator delivery system would keep changing.
Another problem concerns testing alternative schemes for controlling automobile
traffic in a large city. It would be impractical to constantly change directions of the
one-way streets and the distribution of traffic signals to conduct tests.

In still other situations, the system for which alternative procedures need to
be tested may not even exist yet. An example is the situation of several proposed
communications networks with the problem of determining which is best for a
given office building. Still another example is the problem of determining locations
of machines in a new industrial plant. The cost of conducting experiments may be
prohibitive. This is the case when trying to predict the effects of various alternatives
for protecting and evacuating the population in case of failure of a nuclear power
plant.

In instances in which the behavior cannot be explained analytically or data
collected directly the modeler might simulate the behavior indirectly in some man-

175

176

CHAPTER 5 Simulation Modeling

ner and then test the various alternatives under consideration to estimate how each
affects the behavior. Data can then be collected to determine which alternative is
best. An example is to determine the drag force on a proposed submarine. Because
it is infeasible to build a prototype, we can build a scaled model to simulate the be-
havior of the actual submarine. Another example of this type of simulation is using
a scaled model of a jet airplane in a wind tunnel to estimate the effects of very high
speeds for various designs of the aircraft. There is yet another type of simulation,
which we will study in this chapter. The method for simulating behavior is called
Monte Carlo simulation and is typically accomplished with the aid of a computer.

Suppose we are investigating the service provided by a system of elevators
at morning rush hour. In Monte Carlo simulation the arrival of customers at the
elevators during the hour and the destination floors they select need to be replicated.
That is, the distribution of arrival times and the distribution of floors desired on
the simulated trial must portray a possible rush hour. Moreover, after we simulated
many trials, the daily distribution of arrivals and destinations that occur must mimic
the real-world distributions in proper proportions. When we are satisfied that the
behavior is adequately duplicated, we can investigate various alternative strategies
for operating the elevators. Using a large number of trials, we can gather appropriate
statistics, such as the average total delivery time of a customer or the length of the
longest queue. These statistics can help determine the best strategy for operating
the elevator system.

This chapter provides a brief introduction to Monte Carlo simulation. Ad-
ditional studies in probability and statistics are required to delve into the intrica-
cies of computer simulation and understand its appropriate uses. Nevertheless, you
will gain some appreciation of this powerful component of mathematical model-
ing. Keep in mind that there is a danger in placing too much confidence in the pre-
dictions resulting from a simulation, especially if the assumptions inherent in the
simulation are not clearly stated. Moreover, the appearance of using large amounts
of data and huge amounts of computer time, coupled with the fact the layman can
understand a simulation model and computer output with relative ease, often leads
to overconfidence in the results.

When any Monte Carlo simulation is performed, random numbers are used.
We discuss how to generate random numbers in Section 5.2. Loosely speaking, a
“sequence of random numbers uniformly distributed in an interval m to n” is a
set of numbers with no apparent pattern, where each number between m and n can
appear with equal likelihood. For example, if you toss a six-sided die 100 times and
write down the number showing on the die each time, you will have written down
a sequence of 100 random integers approximately uniformly distributed over the
interval 1 to 6. Now, suppose that random numbers consisting of six digits can be
generated. The tossing of a coin can be duplicated by generating a random number
and assigning it a head if the random numbser is even and a tail if the random number
is odd. If this trial is replicated a large number of times, you would expect heads
to occur about 50% of the time. However, there is an element of chance involved.
It is possible that a run of 100 trials could produce 51 heads and that the next 10
trials (although not very likely) would produce all heads. Thus, the estimate with
110 trials is actually worse than the estimate with 100 trials. Processes with an

Figure 5.1

The behavior and the model
can be either deterministic
or probabilistic

5.1 Simulating Deterministic Behavior: Area Under a Curve 177

element of chance involved are called probabilistic, as opposed to deterministic,
processes. Monte Carlo simulation is therefore a probabilistic model.

The modeled behavior may be either deterministic or probabilistic. For in-
stance, the area under a curve is deterministic (even though it may be impossible
to find it precisely). On the other hand, the time between arrivals of customers at
the elevator on a particular day is probabilistic behavior. Referring to Figure 5.1 we
can see that a deterministic model can be used to approximate either a determinis-
tic or probabilistic behavior and, likewise, a Monte Carlo simulation can be used
to approximate a deterministic behavior (as you will see with a Monte Carlo ap-
proximation to an area under a curve) or a probabilistic one. However, as we would
expect, the real power of Monte Carlo simulation lies in modeling a probabilistic
behavior.

Behavior Model
Deterministic 2 Deterministic
Probabilistic Probabilistic

A principal advantage of Monte Carlo simulation is the relative ease with
which it can sometimes be used to approximate very complex probabilistic sys-
tems. Additionally, Monte Carlo simulation provides performance estimation over
a wide range of conditions rather than a very restricted range as often required by an
analytic model. Furthermore, because a particular submodel can be changed rather
easily in a Monte Carlo simulation (such as the arrival and destination patterns of
customers at the elevators), there is the potential of conducting a sensitivity analy-
sis. Still another advantage is that the modeler has control over the level of detail
in a simulation. For example, a very long time frame can be compressed or a small
time frame expanded, giving a great advantage over experimental models. Finally,
there are very powerful, high-level simulation languages (such as GPSS, GASP,
PROLOG, SIMAN, SLAM, and DYNAMO) that eliminate much of the tedious
labor in constructing a simulation model.

On the negative side, simulation models are typically expensive to develop
and operate. They may require many hours to construct and large amounts of com-
puter time and memory to run. Another disadvantage is that the probabilistic nature
of the simulation model limits the conclusions that can be drawn from a particular
run unless a sensitivity analysis is conducted. Such an analysis often requires many
more runs just to consider a small number of combinations of conditions that can
occur in the various submodels. This limitation then forces the modeler to estimate
which combination might occur for a particular set of conditions.

5.1 Simulating Deterministic Behavior: Area Under a Curve

In this section we illustrate the use of Monte Carlo simulation to mode} a determin-
istic behavior, the area under a curve. We begin by finding an approximate value to
the area under a nonnegative curve. Specifically, suppose y = f(x) is some given

SUMAN MAITY
Highlight

178 CHAPTER 5 Simulation Modeling

Figure 5.2

The area under the
nonnegative curve

y= f(x)overa <x <bis
contained within the
rectangle of height M and
base length b — a

continuous function satisfying 0 < f(x) < M over the closed intervala < x < b.
Here, the number M is simply some constant that bounds the function. This sit-
uation is depicted in Figure 5.2. Notice that the area we seek is wholly contained
within the rectangular region of height M and length b—a (the length of the interval
over which f is defined).

y Points are not counted when they
A lie above the curve y = f(x)
M //

1
1
1
|
|
t
i

Points below the curve
*r are counted

- X

b

®P(x, y)

[

Now we select a point P(x, y) at random from within the rectangular region.
We will do so by generating two random numbers, x and y, satisfyinga < x < b
and0 < y < M, and interpreting them as a point P with coordinates x and y. Once
P(x, y) is selected, we ask if it lies within the region below the curve; that is, does
the y-coordinate satisfy 0 < y < f(x)? If the answer is yes, then count the point
P by adding one to some counter. Two counters will be necessary: one to count the
total points generated and a second to count those points that lie below the curve
(Figure 5.2). You can then calculate an approximate value for the area under the
curve by the following formula:

area under curve _ number of points counted below curve

area of rectangle total' number of random points

As discussed in the Introduction, the Monte Carlo technique is probabilistic and
typically requires a large number of trials before the deviation between the pre-
dicted and true values becomes small. A discussion of the number of trials needed
to ensure a predetermined level of confidence in the final estimate requires a back-
ground in statistics. However, as a general rule, to double the accuracy of the result
(i.e., cut the expected error in half), about four times as many experiments are nec-
essary.

The following algorithm gives the sequence of calculations needed for a gen-
eral computer simulation of this Monte Carlo technique for finding the area under
a curve:

Monte Carlo Area Algorithm

Input
Output

Step 1

Total number n of random points to be generated in the simulation.

AREA = approximate area under the specified curve y = f(x) over the given
interval a < x < b, where 0 < f(x)y < M.

Initialize: COUNTER = 0.

SUMAN MAITY
Highlight

Step 2
Step 3
Step 4
Step 5

Step 6
Step 7

5.1 Simulating Deterministic Behavior: Area Under a Curve 179

Fori =1,2,...,n,do Steps 3-5.

Calculate random coordinates x; and y;, satisfyinga < x; <band0 <y; < M.
Calculate f(x;) for the random x; coordinate.

If y; < f(x;), then increment the COUNTER by 1. Otherwise, leave COUNTER
as is.

Calculate AREA = M (b — a) COUNTER/n.

OUTPUT (AREA)
STOP

Table 5.1 gives the results of several different simulations to obtain the area
beneath the curve y = cosx over the interval —7/2 < x < n/2, where 0 <
cosx < 2.

Table 5.1 Monte Carlo approximation to the
area under the curve y = cos x over the interval

/2 <Xx<mw/2
Number Approximation Number Approximation
of points to area of points to area
100 2.07345 2000 1.94465
200 2.13628 3000 1.97711
300 2.01064 4000 £.99962
400 2.12058 5000 2.01429
500 2.04832 6000 2.02319
600 2.09440 8000 2.00669
700 2.02857 10000 2.00873
800 1.99491 15000 2.00978
900 1.99666 20000 2.01093
1000 1.96664 30000 201186

The actual area under the curve y = cos x over the given interval is 2 square
units. Note that even with the relatively large number of points generated, the error
is significant. For functions of one variable, the Monte Carlo technique is generally
not competitive with quadrature techniques that you will learn in numerical analy-
sis. The lack of an error bound and the difficulty in finding an upper bound M are
disadvantages as well. Nevertheless, the Monte Carlo technique can be extended to
functions of several variables and becomes more practical in that situation.

Volume Under a Surface

Let’s consider finding part of the volume of the sphere
24yt <i

that lies in the first octant, x > 0,y > 0,z > 0 (Figure 5.3).

SUMAN MAITY
Highlight

180 CHAPTER 5 Simulation Modeling

Figure 5.3

Volume of a sphere

x2 +y2+z2 < | that lies
in the first octant, x > 0,
y>0,z>0

The methodology to approximate the volume is very similar to that of finding
the area under a curve. However, now we will use an approximation for the volume
under the surface by the following rule:

volume under surface _ number of points counted below surface in 1st octant
volume of box total number of points

The following algorithm gives the sequence of calculations required to employ
Monte Carlo techniques to find the approximate volume of the region:

Monte Carlo Volume Algorithm

Input
Output

Step 1
Step 2
Step 3

Step 4
Step 5

Step 6
Step 7

Total number n of random points to be generated in the simulation.

VOLUME = approximate volume enclosed by the specified function, z = f(x, y)
in the first octant, x > 0,y > 0,z > 0.

Initialize: COUNTER = 0.

Fori =1,2,...,n,do Steps 3-5.

Calculate random coordinates x;, y;, z; that satisfy: 0 < x; < 1,0 < y; < 1,
O0<z <1

(Ingeneral,a <x; <b,c <y <d,0<z, < M)

Calculate f(x;, y;) for the random coordinate (x;, y;).

If random z; < f(xi, ¥;), then increment the COUNTER by 1. Otherwise, leave
COUNTER as is.

Calculate VOLUME = M(d - ¢)(b — a)COUNTER/n.

OUTPUT (VOLUME)

STOP

Table 5.2 gives the results of several Monte Carlo runs to obtain the approxi-
mate volume of

Pyt
that lies in the first octant, x > 0,y > 0,z > 0.

SUMAN MAITY
Highlight

5.1 Problems

5.1 Simulating Deterministic Behavior: Area Under a Curve 181

Table 5.2 Monte Carlo
approximation to the volume in the
first octant under the surface
xXX+y?+22 <1

Number of points Approximate volume

100 0.4700
200 0.5950
300 0.5030
500 0.5140
1,000 0.5180
2,000 0.5120
5,000 0.5180
10,000 0.5234
20,000 0.5242

The actual volume in the first octant is found to be approximately 0.5236

cubic units (/6 with R = 1). Generally, though not uniformly, the error becomes
smaller as the number of points generated increases,

1.

Each ticket in a lottery contains a single “hidden” number according to the
following scheme: 55% of the tickets contain a 1, 35% contain a 2, and 10%
contain a 3. A participant in the lottery wins a prize by obtaining all three
numbers 1, 2, and 3. Describe an experiment that could be used to determine
how many tickets you would expast to buy to win a prize.

. Two record companies, A and B, produce classical music recordings. Label A

is a budget label and 5% of A’s new compact discs exhibit significant degrees
of warpage. Label B is manufactured under tighter quality control (and conse-
quently more expensive) than A, so only 2% of its compact discs are warped.
You purchase one label A and one label B recording at your local store on a reg-
ular basis. Describe an experiment that could be used to determine how many
times you would expect to make such a purchase before buying two warped
compact discs for a given sale.

Using Monte Carlo simulation, write an algorithm to calculate an approxima-
tion to 7w by considering the number of random points selected inside the quar-
ter circle

Q:x2+y2=l,x20,y20

where the quarter circle is taken to be inside the square

SUMAN MAITY
Highlight

182

CHAPTER 5 Simulation Modeling

§:0<x<land0<y<]

Use the equation that /4 = area () /area S.

4. Using Monte Carlo simulation, write an algorithm to calculate that part of the
volume of an ellipsoid

2 2 2
x y z
—++ <16
R

that lies in the first octant, x > 0,y > 0,z > 0.

3. Using Monte Carlo simulation, write an algorithm to calculate the volume
trapped between the two paraboloids

z=8-x2—y% and z = x% +3y?

Note that the two paraboloids intersect on the elliptic cylinder

x2+2y2=4

5.2 Generating Random Numbers

In the previous section, we developed algorithms for Monte Carlo simulations to
find areas and volumes. A key ingredient common to each algorithm is the need for
random numbers. Random numbers have a variety of applications, including gam-
bling problems, finding an area or volume, and modeling larger complex systems
such as large-scale combat operations or air traffic control situations.

In some sense a computer really does not generate random numbers because
computers employ deterministic algorithms. However, we can generate sequences
of pseudorandom numbers that, for all practical purposes, may be considered ran-
dom. There is no single best random number generator or best test to ensure ran-
domness.

There are complete courses of study for random numbers and simulations
that cover in-depth the methods and tests for pseudorandom number generators.
Our purpose here is to introduce a few random number methods that can be utilized
to generate sequences of numbers that are nearly random.

Many programming languages, such as Pascal and Basic, and other software
(e.g., Minitab, MATLAB, and EXCEL) have built-in random number generators
for user convenience.

Middle-Square Method

The middle-square method was developed in 1946 by John Von Neuman, S. Ulm,
and N. Metropolis at Los Alamos Laboratories to simulate neutron collisions as
part of the Manhattan Project. Their middle-square method works as follows:

SUMAN MAITY
Highlight

SUMAN MAITY
Highlight

5.2 Generating Random Numbers 183

1. Start with a four-digit number xy, called the seed.
2. Square it to obtain an eight-digit number (add a leading zero if necessary).
3. Take the middle four digits as the next random number.

Continuing in this manner, we obtain a sequence that appears to be random
over the integers from 0 to 9999. These integers can then be scaled to any interval a
to b. For example, if we wanted numbers from 0O to 1 we would divide the four-digit
numbers by 10,000. Let’s illustrate the middle-square method.

Pick a seed, say xo = 2041 and square it (adding a leading zero) to get
04165681. The middle four digits give the next random number, 1656. Generating
9 random numbers in this way yields

n |0 1 2 3 4 5 6 7 8 9 10 11 12
x,,|2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

We can use more than 4 digits if we wish, but we always take the middle
number of digits equal to the number of digits in the seed. For example, if xo =
653217 (6 digits), its square 426,692,449,089 has 12 digits. Thus, take the middle
6 digits as the random number, namely, 692449.

The middle-square method is reasonable, but it has a major drawback in its
tendency to degenerate to zero (where it will stay forever). With the seed 2041, the
random sequence does seem to be approaching zero. How many numbers can be
generated until we are almost at zero?

Linear Congruence

The linear congruence method was introduced by D. H. Lehmer in 1951 and a ma-
jority of pseudorandom numbers used today are based on this method. One advan-
tage it has over other methods is that seeds can be selected that generate patterns
that eventually cycle (we illustrate this concept with an example). However, the
length of the cycle is so large that the pattern does not repeat itself on large com-
puters for most applications. The method requires the choice of three integers: a,
b, and c. Given some initial seed, say xq, we generate a sequence by the rule

Xn+1 = (a X x5 + b)mod(c)

where ¢ is the modulus, a is the multiplier, and b is the increment. The qualifier
mod(c) in the equation means to obtain the remainder after dividing the quantity
(a X x, + b) by c. For example, witha = 1, b =7, and ¢ = 10,

Xn+1 = (1 X x, + 7)mod(10)

means x,] is the integer remainder upon dividing x,, + 7 by 10. Thus, if x, = 115,
then x, 4| = remainder (11—%2) =2,

Before investigating the linear congruence methodology, we need to discuss
cycling, which is a major problem that occurs with random numbers. Cycling

SUMAN MAITY
Highlight

184 CHAPTER 5 Simulation Modeling

5.2 Problems

means the sequence repeats itself, and although undesirable, it is unavoidable. At
some point, all pseudorandom number generators begin to cycle. Let's illustrate
cycling with an example.

If we set our seed at xg = 7, we find x; = (1 x 74+7) mod(10) or 14 mod(10),
which is 4. Repeating this same procedure, we obtain the following sequence:

7,4,1,8,52,9,6,3,0,7,4,...

and the original sequence repeats again and again. Note that there is cycling after 10
numbers. The methodology produces a sequence of integers between 0 and ¢ — 1
inclusively before cycling (which includes the possible remainders after dividing
the integers by ¢). Cycling is guaranteed with at most ¢ numbers in the random
number sequence. Nevertheless, ¢ can be chosen to be very large and a and b chosen
in such a way to obtain a full set of c numbers before cycling begins to occur. Many
computers use ¢ = 2*! for the large value of c¢. Again, we can scale the random
numbers to obtain a sequence between any limits a and b, as required.

A second problem that can occur with the linear congruence method is lack
of statistical independence among the members in the list of random numbers. Any
correlations between the nearest neighbors, the next-nearest neighbors, the third-
nearest neighbors, and so forth are generally unacceptable. (Because we live in
a three-dimensional world, third-nearest neighbor correlations can be particularly
damaging in physical applications.) Pseudorandom number sequences can never be
completely statistically independent because they are generated by a mathematical
formula or algorithm. Nevertheless, the sequence will appear (for practical pur-
poses) independent when it is subjected to certain statistical tests. These concerns
are best addressed in a course in statistics.

1. Use the middle-square method to generate

(a) 10 random numbers using xo = 1009.

(b) 20 random numbers using xg = 653217.

(c). 15 random numbers using xyp = 3043.

(d) Comment about the results of each sequence. Was there cycling? Did each
sequence degenerate rapidly?

2. Use the linear congruence method to generate
(a) 10 random numbers usinga =5,b =1, and ¢ = 8.
(b) 15 random numbers usinga = 1, b = 7, and ¢ = 10.
(c) 20 random numbers usinga = 5, b = 3, and ¢ = 16.

(d) Comment about the results of each sequence. Was there cycling? If so,
when did it occur?

SUMAN MAITY
Highlight

SUMAN MAITY
Highlight

5.2 Projects

5.2 Generating Random Numbers 185

Step 1
Step 2

Step 3
Step 4
Step 5
Step 6
Step 7

1. Complete the requirement for UMAP module 269, “Monte Carlo: The Use
of Random Digits to Simulate Experiments,” by Dale T. Hoffman. The Monte
Carlo technique is presented, explained, and used to find approximate solutions
to several realistic problems. Simple experiments are included for student prac-
tice.

2. “Random Numbers” by Mark D. Myerson, UMAP 590. This module discusses
methods for generating random numbers and presents tests for determining the
randomness of a string of numbers. Complete this module and prepare a short
report on testing for randomness.

3. Write a computer program to generate uniformly distributed random integers
in the interval m < x < n, where m and n are integers, according to the
following algorithm:

Let d = 2*! and choose N (the number of random numbers to generate).
Choose any seed integer ¥ such that
999999 > Y > 100000
Leti =1.
Let Y = (15625 + 22221) mod(d).
Let X; = m +floor[(n — m + 1)Y /d].
Incrementi by 1: i =i + 1.
GotoStep4 unlessi = N + 1.

Here, floor (p) means the largest integer not exceeding p.

For most choices of Y, the numbers X;, X5,... form a sequence of
(pseudo)random integers as desired. One possible recommended choice is ¥ =
368731. To generate random numbers (not just integers) in an interval a to b
with a < b, use the preceding algorithm, replacing the formula in Step 5 by

Y(b—a)

Let X; =
et X; =a+ -1

4. Write a program to generate 1000 integers between 1 and 5 in a random fashion
so that 1 occurs 22% of the time, 2 occurs 15% of the time, 3 occurs 31% of
the time, 4 occurs 26% of the time, and 5 occurs 6% of the time. Over what
interval would you generate the random numbers? How do you decide which

of the integers from 1 to 5 has been generated according to its specified chance
of selection?

S. Write a program or use a spreadsheet to find the approximate area or volumes
in Problems 3-5 in Section 5.1.

186

CHAPTER 5 Simulation Modeling

5.3 Simulating Probabilistic Behavior

One of the keys to good Monte Carlo simulation practices is an understanding of
the axioms of probability. The term probability refers to the study of both random-
ness and uncertainty as well as the quantifying of the likelihoods associated with
various outcomes. Probability can be seen as a long-term average. For example, if
the probability of an event occurring is 1 out of 5, then in the long run, the chance
of the event happening is 1/5. Over the long haul, the probability of an event can be
thought of as the ratio of

number of favorable events

total number of events

Our goal in this section is to show how to model simple probabilistic behavior
to build intuition and understanding before developing submodels of probabilistic
processes to incorporate in simulations (Sections 5.4 and 5.5)

We examine three simple probabilistic models:

1. Flip of a fair coin
2. Roll of a fair die or pair of dice

3. Roll of an unfair die or pair of unfair dice

A Fair Coin

Most people realize that the chance of obtaining a head or a tail on a coin is 1/2.
What happens if we actually start flipping a coin? Will one out of every two flips be
a head? Probably not. Again, probability is a long-term average. Thus, in the long
run, the ratio of heads to the number of flips approaches 0.5. Let’s define f(x) as
follows, where x is a random number between [0, 1]:

Head, 0 <x <0.5
f(")zl Tail, 0.5 <x <1

Note that f(x) assigns the outcome head or tail to a number between {0, 1].
We want to take advantage of the cumulative nature of this function as we make
random assignments to numbers between [0, 1]. In the long run we expect to find
the following percent occurrences:

Random number interval Cumulative occurrences Percent occurrence

x <0 0 0.00
0<x <035 05 0.50
05<x<1.0 l 0.50

Let’s illustrate using the following algorithm:

5.3 Simulating Probabilistic Behavior 187

Monte Carlo Fair Coin Algorithm
Input Total number n of random flips of a fair coin to be generated in the simulation.
Output Probability of getting a head when we flip a fair coin.
Step 1 Initialize: COUNTER = 0.
Step 2 Fori=1,2,...,n,do Steps 3 and 4.
Step3 Obtain a random number x; between 0 and 1.

Step4 IfO0 < x; < 0.5, then COUNTER = COUNTER + 1. Otherwise, leave COUNTER
as is.

Step 5 Calculate P(head) = COUNTER/n.

Step6 OUTPUT Probability of heads, P(head).
STOP

Table 5.3 illustrates our results for various choices n of the number of random
x; generated. Note that as n gets large, the probability of heads occurring is 0.5, or
half the time.

Table 5.3 Resuits from flipping a fair coin
Number of flips Number of heads Percent heads

100 49 0.49
200 102 0.51
500 252 0.504
1,000 492 0.492
5,000 2469 0.4930
10,000 4993 0.4993

Roll of a Fair Die

Rolling a fair die adds a new twist to the process. In the flip of a coin, only one event
is assigned (with two possible answers, yes or no). Now we must devise a method
to assign six events because a die consists of the numbers {1,2,3,4,5,6}. The
probability of each event occurring is 1/6 because each number is equally likely to
occur. As before, this probability of a particular number occurring is defined to be

number of occurences of the particular number {1, 2, 3, 4, 5, 6}
total number of trials

We can use the following algorithm to generate our experiment for a roll of a die:

Monte Carlo Roll of a Fair Die Algorithm
Input Total number » of random rolls of a die in the simulation.
Output The percentage or probability for rolls {1, 2, 3, 4, 5, 6}.
Step 1 Initialize COUNTER 1 through COUNTER 6 to zero.

188 CHAPTER 5 Simulation Modeling

Step 2 Fori =1,2,... ,n do Steps 3 and 4.
Step 3 Obtain a random number satisfying 0 < x; < 1.
Step 4 If x; belongs to these intervals, then increment the appropriate COUNTER.

0<x; <t COUNTER!=COUNTER 1+ 1
§<xi <% COUNTER2=COUNTER2+ 1
¢<x <% COUNTER3=COUNTER3 + 1
2<x <4 COUNTER4=COUNTER4 + 1
§<x;<i COUNTERS=COUNTERS + |
2<xi<1 COUNTER 6= COUNTER 6 + 1

Step 5 Calculate probability of each roll j = {1, 2, 3,4, 5, 6} by COUNTER(j)/n.

Step 6 OUTPUT probabilities.
STOP

Table 5.4 illustrates the results for 10, 100, 1000, 10,000, and 100,000 runs.
We see that with 100,000 runs we are close (for these trials) to the expected results.

Table 5.4 Results from a roll of a fair die (n = number of trials)
Die value 10 100 1000 10,000 100,000 Expected results

i 0300 0.190 0.152 0.1703 0.1652 0.1667
2 0.00 0150 0.152 0.1652 0.1657 0.1667
3 0.100 0.090 0.157 0.1639 0.1685 0.1667
4 000 0160 0.180 0.1653 0.1685 0.1667
5 0400 0.150 0.174 0.1738 0.1676 0.1667
6 0.200 0.160 0.185 0.1615 0.1652 0.1667

Roll of an Unfair Die

Let’s consider a probability model in which each event is not equally likely. Assume
the die is loaded or biased according to the following empirical distribution:

Roll value P(roll)

1 0.1
2 0.1
3 0.2
4 0.3
5 02
6 0.1

The cumulative occurrences for the function to be used in our algorithm would be

5.3 Simulating Probabilistic Behavior 189

Value of x; Assignment

{0,0.1] ONE
0.1,0.2} T™WO
0.2,0.4] THREE
(0.4,0.7) FOUR
(0.7,0.9] FIVE
(0.9, 1.0] SIX

We model the roll of an unfair die using the following algorithm:

Monte Carlo Roll of an Unfair Die Algorithm
Input Total number n of random rolls of a die in the simulation.
Output The percentage or probability for rolls {1, 2, 3,4, 5, 6}.
Step 1 Initialize COUNTER 1 through COUNTER 6 to zero.
Step 2 Fori =1,2,...,n,do Steps 3 and 4.
Step 3 Obtain a random number satisfying 0 < x; < 1.
Step 4 If x; belongs to these intervals, then increment the appropriate COUNTER.
0<x <01 COUNTER 1 = COUNTER 1 + 1
0.1 <x; 0.2 COUNTER 2 = COUNTER 2 + 1
02 <x <04 COUNTER 3 = COUNTER 3 + 1
04 <x; <07 COUNTER 4 = COUNTER 4 + 1
07<x <09 COUNTER 5 = COUNTER 5 + 1
09<xi <10 COUNTER 6 = COUNTER 6 + 1
Step § Calculate probability of each roll j = (I, 2, 3,4, 5, 6} by COUNTER()/n.

Step 6 OUTPUT probabilities.
STOP

The results are shown in Table 5.5. Note that a large number of trials are required
for the model to approach the long-term probabilities.

In the next section, we will see how to use these ideas to simulate a real-world
probabilistic situation.

Table 5.5 Results from a roll of an unfair die
Die value 100 1000 5000 10,000 40,000 Expected results

1 0.080 0.078 0.094 0.0948 0.0948 0.1
2 0.110 0.099 0.099 0.0992 0.0992 0.1
3 0.230 0199 0192 0.1962 0.1962 02
4 0.360 0320 0308 03082 0.3081 03
5 0.110 0.184 0201 02012 02011 0.2
6 0.110 0.120 0.104 0.i044 0.1045 0.1

190 CHAPTER 5 Simulation Modeling

5.3 Problems

5.3 Projects

1. You arrive at the beach for a vacation and are dismayed to learn that the local

weather station is predicting a 50% chance of rain every day. Using Monte
Carlo simulation, predict the chance that it rains three consecutive days during
your vacation.

. Use Monte Carlo simulation to approximate the probability of three heads oc-

curring when five fair coins are flipped.

. Usz Monte Carlo simulation to simulate the sum of 100 consecutive rolls of a

fair die.

. Given loaded dice according to the following distribution, use Monte Carlo

simulation to simulate the sum of 300 rolls of two unfair dice.

Roll Diel Die?2

1 0.1 0.3
2 0.1 0.1
3 0.2 0.2
4 0.3 0.1
5 0.2 0.05
6 0.1 0.25

. Make up a game that uses a flip of a fair coin, and then use Monte Carlo simu-

lation to predict the results of the game.

- Blackjack—Construct and perform a Monte Carlo simulation of blackjack

(also called twenty-one). The rules of blackjack are as follows:

Most casinos use six or eight decks of cards when playing this game to inhibit
“card counters.” You will use two decks of cards in your simulation (104 cards
total). There are only two players, you and the dealer. Each player receives two
cards to begin play. The cards are worth their face value for 2-10, 10 for face
cards (jack, queen, and king), and either 1 or 11 points for Aces. The object of
the game is to obtain a total as close to 21 as possible without going over (called
“busted”) so that your total is more than the dealer’s.

If the first two cards total 21 (ace-10 or aceface card), this is called blackjack
and is an automatic winner (unless both you and the dealer have blackjack, in
which case it is a tie, or “push,” and your bet remains on the table). Winning via
blackjack pays you 3 to 2, or 1.5 to 1 (a $1 bet reaps $1.50 and you do not lose
the $1 you bet).

If neither you nor the dealer has blackjack, you can take as many cards as you
want, one at a time, to try to get as close to 21 as possible. If you go over 21, you

5.3 Simulating Probabilistic Behavior 191

lose and the game ends. Once you are satisfied with your score, you “stand.” The
dealer then draws cards according to the following rules:

The dealer stands on 17, 18, 19, 20, or 21. The dealer must draw a card if the
total is 16 or less. The dealer always counts aces as 11 unless it causes him or
her to bust, in which case it is counted as a 1. For example, an ace—6 combo for
the dealer is 17, not 7 (the dealer has no option), and the dealer must stand on 17.
However, if the dealer has an ace—4 (for 15) and draws a king, then the new total
is 15 because the ace reverts to its value of 1 (so as not to go over 21). The dealer
would then draw another card.

If the dealer goes over 21, you win (even your bet money; you gain $1 for
every $1 you bet). If the dealer’s total exceeds your total, you lose all the money
you bet. If the dealer’s total equals your total, it is a push (no money exchanges
hands; you do not lose your bet, but neither do you gain any money).

What makes the game exciting in a casino is that the dealer’s original
two cards are one up, one down, so you do not know the dealer’s total and must
play the odds based on the one card showing. You do not need to incorporate
this twist into your simulation for this project. Here’s what you are required
to do:

Run through 12 sets of two decks playing the game. You have an unlim-
ited bankroll (don’t you wish!) and bet $2 on each hand. Each time the two
decks run out, the hand in play continues with two fresh decks (104 cards). At
that point record your standing (plus or minus X dollars). Then start again at
0 for the next deck. So your output will be the 12 results from playing each
of the 12 decks, which you can then average or total to determine your overall
performance.

What about your strategy? That’s up to you! But here’s the catch—you
will assume that you can see neither of the dealer’s cards (so you have no
idea what cards the dealer has). Choose a strategy to play, and then play it
throughout the entire simulation. (Blackjack enthusiasts can consider imple-
menting doubling down and splitting pairs into their simulation, but this is not
necessary.)

Provide your instructor with the simulation algorithm, computer code,
and output results flom each of the 12 decks.

Darts—Construct and perform a Monte Carlo simulation of a darts game. The
rules are

Dart board area Points

Buliseye 50
Yellow ring 25
Blue ring 15
Red ring 10
White ring 5

From the origin (the center of the bullseye), the radius of each ring is as
follows:

192 CHAPTER 5 Simulation Modeling

Mathematical Derby

Entry’s name Odds
Euler’s Folly 7-1
Leapin’ Leibniz 5~1
Newton Lobell 9-1
Count Cauchy 12-1
Pumped up Poisson 4-1
Loping L’Hopital 35-1
Steamin’ Stokes 15-1
Dancin’ Dantzig 4-1

Distance to outer ring edge
Ring Thickness (in.) from the origin (in.)

Bullseye 1.0 1.0
Yellow 1.5 2.5
Blue 2.5 5.0
Red 3.0 8.0
White 4.0 12.0

The board has a radius of 1 ft (12 in.).

Make an assumption about the distribution of how the darts hit on the
board. Write an algorithm, and code it in the computer language of your
choice. Run 1000 simulations to determine the mean score for throwing five
darts. Also, determine which ring has the highest expected value (point value
times the probability of hitting that ring).

. Craps—Construct and perform a Monte Carlo simulation of the popular casino

game of craps. The rules are as follows:

There are two basic bets in craps, pass and don’t pass. In the pass bet, you wager
that the shooter (the person throwing the dice) will win; in the dont pass bet, you
wager that the shooter will lose. We will play by the rule that on an initial rolt
of 12 (“boxcars™), both pass and don’t pass bets are losers. Both are even-money
bets.

Conduct of the game:

Roll a 7 or 11 on the first roll: Shooter wins (pass bets win and don’t pass
bets lose).

Roll a 12 on the first roll: Shooter loses (boxcars, pass and don't pass bets
lose).

Roll a 2 or 3 on the first roll: Shooter loses (pass bets lose, don’t pass bets
win).

Roll 4,5, 6, 8, 9, 10 on the first roll: This becomes the point. The object then
becomes to roll the point again before rolling a 7.

The shooter continues to roll the dice until the point or a 7 appears. Pass
bettors win if the shooter rolls the point again before rolling a 7. Don’t pass
bettors win if the shooter rolls a 7 before rolling the point again.

Write an algorithm and code it in the computer language of your
choice. Run the simulation to estimate the probability of winning a pass
bet and the probability of winning a don’t pass bet. Which is the better
bet? As the number of trials increases, to what do the probabilities con-
verge?

Horse Race—Construct and perform a Monte Carlo simulation of a horse
race. You can be creative and use odds from the newspaper, or simulate the
Mathematical Derby with the entries and odds shown on the left.

Construct and perform a Monte Carlo simulation of 1000 horse races.
Which horse won the most races? Which horse won the fewest races? Do these

5.3 Simulating Probabilistic Behavior 193

results surprise you? Provide the tallies of how many races each horse won
with your output.

. Roulette—In American roulette, there are 38 spaces on the wheel: 0, 00, and
1-36. Half the spaces numbered 1-36 are red and half are black. The two
spaces 0 and 00 are green.

Simulate the playing of 1000 games betting either red or black (which
pay even money, 1:1). Bet $1 on each game and keep track of your earnings.
What are the earnings per game betting red/black according to your simula-
tion? What was your longest winning streak? Longest losing streak?

Simulate 1000 games betting green (pays 17:1, so if you win, you add
$17 to your kitty, and if you lose, you lose $1). What are your earnings per
game betting green according to your simulation? How does it differ from
your earnings betting red/black? What was your longest winning streak betting
green? Longest losing streak? Which strategy do you recommend using, and
why?

- The Price Is Right—On the popular TV game show “The Price Is Right,” at the
end of each half hour, the three winning contestants face off in the Showcase
Showdown. The game consists of spinning a large wheel with 20 spaces on
which the pointer can land, numbered from $0.05 to $1.00 in 5¢ increments.
The contestant who has won the least amount of money at this point in the
show spins first, followed by the one who has won the next most, followed by
the biggest winner for that half hour.

The objective of the game is to obtain as close to $1.00 as possible with-
out going over that amount with a maximum of two spins. Naturally, if the first
player does not go over, the other two will use one or both spins in an attempt
to overtake the leader.

However, what of the person spinning first? If he or she is an ex-
pected value decision maker, how high a value on the first spin does he
or she need to not want a second spin? Remember, the person can lose
if
(a) Either of the other two players surpasses the player’s total or
(b) The player spins again and goes over $1.

- Let’s Make a Deal—You are dressed to kill in your favorite costume and the
host picks you out of the audience. You are offered the choice of three wallets.
Two wallets contain a single $50 bill, and the third contains a $1000 bill. You
choose one of the wallets, 1, 2, or 3. The host, who knows which wallet con-
tains the $1000, then shows you one of the other two wallets, which has $50
inside. The host does this purposely because he has at least one wallet with
$50 inside. If he also has the $1000 wallet, he simply shows you the $50 one
he holds. Otherwise, he just shows you one of his two $50 wallets. The host
then asks you if you want to trade your choice for the one he’s still holding.
Should you trade?

Develop an algorithm and construct a computer simulation to support
your answer.

194 CHAPTER 5 Simulation Modeling

5.4 Inventory Model: Gasoline and Consumer Demand

Figure 5.4
A constant demand rate

In the previous section, we began modeling probabilistic behaviors using Monte
Carlo simulation. In this section we will learn a method to approximate more proba-
bilistic processes. Additionally, we will check to determine how well the simulation
duplicates the process under examination. We begin by considering an inventory
control problem.

You have been hired as a consultant by a chain of gasoline stations to deter-
mine how often and how much gasoline should be delivered to the various stations.
Each time gasoline is delivered, a cost of d dollars is incurred, which is in addition
to the cost of gasoline and is independent of the amount delivered. The gasoline
stations are near interstate highways, so demand is fairly constant. Other factors
determining the costs include the capital tied up in the inventory, the amortization
costs of equipment, insurance, taxes, and security measures. We assume that, in the
short run, the demand and price of gasoline are constant for each station, yield-
ing a constant total revenue as long as the station does not run out of gasoline.
Because total profit is total revenue minus total cost, and total revenue is constant
by assumption, total profit can be maximized by minimizing total cost. Thus, we
identify the following problem: Minimize the average daily cost of delivering and
storing sufficient gasoline at each station to meet consumer demand.

After discussing the relative importance of the various factors determining
the average daily cost, we develop the following model:

average daily cost = f(storage costs, delivery costs, demand rate)

Turning our attention to the various submodels, we argue that although the
cost of storage may vary with the amount stored, it is reasonable to assume the
cost per unit stored would be constant over the range of values under consideration.
Similarly, the delivery cost is assumed constant per delivery, independent of the
amount delivered, over the range of values under consideration. Plotting the daily
demand for gasoline at a particular station is very likely to give a graph similar to
the one shown in Figure 5.4a. If the frequency of each demand level over a fixed

>
>
s

slopeis g

Daily quantity demanded

Frequency of demand level
Total quantity demanded

Y
-53

Time in days q Quantitr Time in days

a b c

5.4 Inventory Model: Gasoline and Consumer Demand 195

time period (e.g., I year) is plotted, then a plot similar to that shown in Figure 5.4b
might be obtained.

If demands are tightly packed around the most frequently occurring demand,
then we would accept the daily demand as being constant. In some cases, it may
be reasonable to assume a constant demand. Finally, even though the demands oc-
cur in discrete time periods, a continuous submodel for demand can be used for
simplicity. A continuous submodel is depicted in Figure 5.4c, where the slope of
the line represents the constant daily demand. Notice the importance of each of the
preceding assumptions in producing the linear submodel.

From these assumptions we will construct in Chapter 12 an analytic model
for the average daily cost and use it to compute an optimal time between deliveries
and an optimal delivery quantity:

T = g
sr
Q* =I‘T*

where

T* = optimal time between deliveries in days

Q* = optimal delivery quantity of gasoline in gallons
r = demand rate in gallons per day

d = delivery cost in dollars per delivery

s = storage cost per gallon per day

We will see how the analytic model depends heavily on a set of conditions
that, although reasonable in some cases, would never be met precisely in the real
world. It is difficult to develop analytic models that take into account the proba-
bilistic nature of the submodels.

Suppose we decide to check our submodel for constant demand rate by in-
specting the sales for the past 1000 days at a particular station. Thus, the data dis-
played in Table 5.6 are collected.

For each of the 10 intervals of demand levels given in Table 5.6, compute the
relative frequency of occurrence by dividing the number of occurrences by the total
number of days, 1000. This computation results in an estimate of the probability
of occurrence for each demand level. These probabilities are displayed in Table 5.7
and plotted in histogram form in Figure 5.5.

If we are satisfied with the assumption of a constant demand rate, we might
estimate this rate at 1550 gallons per day (from Figure 5.5). Then the analytic model
could be used to compute the optimal time between deliveries and the delivery
quantities from the delivery and storage costs.

Suppose, however, that we are not satisfied with the assumption of constant
daily demand. How could we simulate the submodel for the demand suggested by
Figure 5.5? First, we could build a cumulative histogram by consecutively adding

196 CHAPTER 5 Simulation Modeling

Figure 5.5

The relative frequency of
each of the demand
intervals in Table 5.7

Table 5.6 History of demand at a particular
gasoline station

Number of occurrences
Number of gallons demanded (in days)

{000-1099 10
1100-1199 20
1200-1299 50
1300-1399 120
14001499 200
1500-1599 270
1600-1699 180
1700-1799 80
1800-1899 40
1500-1999 30

1000

Table 5.7 Probability of the occurrence of each
demand level

Number of gallons demanded Probability of occurrence

1000-1099 0.01
1100-1199 6.02
1200-1299 0.05
1300-1399 0.12
1400-1499 0.20
1500-1599 0.27
1600-1699 0.18
1700-1799 0.08
18001899 0.04
1900-1999 0.03
1.00

Q A

§ 25}

3 20k

S sk ’

=]

2 10

S 05t ‘

E ‘ I] >Gallons

Figure 5.6

A cumulative histogram of
the demand submodel from
the data in Table 5.7

5.4 Inventory Model: Gasoline and Consumer Demand 197

. 1 u O

§ 1ob-________ ot
E [CTIIoI o ITTEIIIIIIII S 5971 1-00
g 09F " " "ggfy T "7~ 093]
= g:- 18 0.85

v P Y

= 06} { 0.67

g 27

= 051 :

5 04— __ 1 i T

& 03F 20)

E: 05

=1

£

=]

o

1700
1800

02 -m-r-—--
0.1 .01_'02_1_— 124]0.20
%—fm > Gallons

together the probabilities of each individual demand level, as displayed in Figure
5.6. Note in Figure 5.6 that the difference in height between adjacent columns rep-
resents the probability of occurrence of the subsequent demand interval. Thus, we
can construct a correspondence between the numbers in the interval 0 < x < 1
and the relative occurrence of the various demand intervals. This correspondence
is displayed in Table 5.8.

Table 5.8 Using random numbers uniformly
distributed over 0 < x < 1 to duplicate the occurrence
of the various demand intervals

Random number Corresponding demand Percent occurrence

0<x <001 1000-1099 0.01
0.01 <x <0.03 1100-1199 0.02
0.03 < x <0.08 1200-1299 0.05
0.08 <x <0.20 1300-1399 0.12
020 <x <040 14001499 0.20
0.40 < x < 0.67 1500-1599 0.27
067 <x <085 1600-1699 0.18
085 <x <093 1700-1799 0.08
093 <x <097 18001899 0.04
097 <x<1.00 1900-1999 0.03

Thus, if the numbers between 0 and 1 are randomly generated so that each
number has an equal probability of occurring, the histogram of Figure 5.5 can be ap-
proximated. Using a random number generator on a handheld programmable calcu-
lator, we generated random numbers between 0 and 1 and then used the assignment
procedure suggested by Table 5.7 to determine the demand interval corresponding
to each random number. The results for 1000 and 10,000 trials are presented in
Table 5.9.

198 CHAPTER 5 Simulation Modeling

Table 5.9 A Monte Carlo approximation of the demand

submodel
Number of occurrences/expected no. of occurrences
Interval 1000 trials 10,000 trials

1000-1099 8/10 91/100
1100-1199 16/20 198/200
1200-1299 46/50 487/500
1300-1399 118/120 1205/1200
1400-1499 194,/200 2008/2000
1500-1599 215/270 268172700
1600-1699 187/180 1812/1800
1700-1799 83/80 857/800
18001899 34/40 377/400
1900-1999 39/30 284/300

1000/1000 10,000/10,000

For the gasoline inventory problem, we ultimately want to be able to deter-
mine a specific demand, rather than a demand interval, for each day simulated. How
can this be accomplished? There are several alternatives. Consider the plot of the
midpoints of each demand interval as displayed in Figure 5.7. Because we want
a continuous model capturing the trend of the plotted data, we can use methods

discussed in Chapter 4.

Figure 5.7 4
A cumulative plot of the 1O} o *
demand submodel 09k .
displaying only the center .

. . 0.8}
point of each interval

07}

, o
b [=))
T 7

.

[3® SN
T
L

Cumulative probability of occurrence
=)
wn
T

e o o o
S
T

. Gallons
demanded

1650
17501
1850 -
1950+

— e e e —

In many instances, especially where the subintervals are small and the data
fairly approximate, a linear spline model is suitable. A linear spline model for the
data displayed in Figure 5.7 is presented in Figure 5.8, and the individual spline
functions are given in Table 5.10. The interior spline functions—S;(g)-Se(q)—

Figure 5.8
A linear spline model for
the demand submodel

5.4 Inventory Model: Gasoline and Consumer Demand 199

S1olq)

Cumulative probability of occurrence

. Gallons
" demanded

Table 5.10 Linear splines for the
empirical demand submodel

Demand interval Linear spline

1000 < g <1050 S1(g) = 0.0002g — 0.2
1050 <g < 1150 S3(¢g) = 0.0002g — 0.2
1150 < g < 1250 S$3(¢) = 0.0005g — 0.545
1250 < g < 1350 S4(q) = 0.0012g — 1.42
1350 <g < 1450 Ss(g) = 0.002g — 2.5
1450 < g < 1550 Sg(g) = 0.0027g — 3.515
1550 <q < 1650 S7(¢) = 0.00189 — 2.12
1650 < ¢ < 1750 Sg(q) = 0.0008g — 0.47
1750 <q < 1850 Sg(g) = 0.0004g + 0.23
1850 <4 <2000 S1o(g) = 0.00029 + 0.6

were computed by passing a line through the adjacent data points. S)(g) was com-
puted by passing a line through (1000, 0) and the first data point (1050, 0.01).
S10(g) was computed by passing a line through the points (1850,0.97) and
(2000, 1.00). Note that if we use the midpoints of the intervals, we have to make a
decision on how to construct the two exterior splines. If the intervals are small, it is
usually easy to construct a linear spline function that captures the trend of the data.

Now suppose we wish to simulate a daily demand for a given day. To do this,
we generate a random number x between 0 and 1 and compute a corresponding
demand, g. That is, x is the independent variable from which a unique correspond-
ing q is calculated. This calculation is possible because the function depicted in
Figure 5.8 is strictly increasing. (Think about whether this situation will always be
the case.) Thus, the problem is to find the inverse functions for the splines listed
in Table 5.10. For instance, given x = S1(g) = 0.0002g — 0.2, we can solve for
g = (x +0.2)5000. In the case of linear splines, it is very easy to find the inverse
functions summarized in Table 5.11.

200

CHAPTER 5 Simulation Modeling

Let’s illustrate how Table 5.11 can be used to represent the daily demand
submodel. To simulate a demand for a given day, we generate a random number
between 0 and 1, say x = 0.214. Because 0.20 < 0.214 < 0.40, the spline ¢ =
{x + 2.5)500 is used to compute ¢ = 1357. Thus, 1357 gallons is the simulated
demand for that day.

Table 5.11 Inverse linear splines
provide for the daily demand as a
function of a random number

in [0, 1]

Random number Inverse linear spline

0<x<00l g=(x+0.2)5000
001 <x <003 g =(x+0.2)5000
003 <x <008 ¢ ={x+05452000
008 <x<020 g=(x+142)83333
020<x <040 g =(x+2.5500
040 <x <067 g =(x+3.515)370.37
067<x <085 g={x+2.12)55555
085 <x <093 ¢g=(0x+047)1250
093 <x <097 g=(x-0232500
097 <x<1.00 g =(x-0.6)5000

Note that the inverse splines presented in Table 5.11 could have been con-
structed directly from the data in Figure 5.6 by choosing x as the independent vari-
able instead of q. We will follow this procedure later when computing the cubic
spline demand submodel. (The preceding development was presented to help you
understand the process and also because it mimics what you will do after studying
probability.) Figure 5.6 is an example of a cumulative distribution function. Many
types of behavior approximate well-known probability distributions, which can be
used as the basis for Figure 5.6 rather than experimental data. The inverse func-
tion must then be found to use as the demand submodel in the simulation, and this
may prove to be difficult. In such cases, the inverse function is approximated with
an empirical model, such as a linear spline or cubic spline. For an excellent intro-
duction to some types of behavior that follow well-known probability distributions,
see UMAP 340, “The Poisson Random Process,” by Carroll Wilde, listed in the
projects at the end of this section.

If we want a smooth continuous submodel for demand, we can construct
a cubic spline submodel. We will construct the splines directly as a function of
the random number x. That is, using a computer program, we calculate the cubic
splines for the following data points:

x) 0 001 003 008 02 04 067 085 093 097 1.0
qllOOO 1050 1150 1250 1350 1450 1550 1650 1750 1850 2000

5.4 Inventory Model: Gasoline and Consumer Demand 201

The splines are presented in Table 5.12. If the random number x = 0.214
is generated, the empirical cubic spline model yields the demand ¢ = 1350 +
715.5(0.014) — 1572.5¢0.014)% + 2476(0.014) = 1359.7 gal.

Table 5.12 An empirical cubic spline model for demand

Random number

Cubic spline

0<x <001
001 <x <003
003 <x <0.08
008 <x <0.20
0.20 < x <040
040 <x < 0.67
067 <x <0.85
0.85<x <093
093 <x <097
097 <x < 1.00

S1(x) = 1000 + 4924.92x + 750788.75x3

Sp(x) = 1050 + 5150.18(x — 0.01) + 22523.66(x — 0.01)2 — 1501630.8(x — 0.01)3

S3(x) = 1150 + 4249.17(x — 0.03) — 67574.14(x — 0.03)% + 451815.88(x — 0.03)3

S4(x) = 1250 + 880.37(x — 0.08) + 198.24(x — 0.08) — 4918.74(x — 0.08)3

Ss(x) = 1350 + 715.46(x — 0.20) — 1572.51(x — 0.20)2 + 2475.98(x — 0.20)°

Se(x) = 1450 + 383.58(x — 0.40) — 86.92(x — 0.40)? + 140.80(x — 0.40)>3

S7(x) = 1550 + 367.43(x — 0.67) + 27.12(x — 0.67)% + 5655.69(x — 0.67)

Sg(x) = 1650 + 926.92(x — 0.85) + 3081.19(x — 0.85)% + 11965.43(x — 0.85)3

Sg(x) = 1750 + 1649.66(x ~ 0.93) + 5952.90(x — 0.93)2 + 382645.25(x — 0.93)3
S10(x) = 1850 + 3962.58(x — 0.97) + 51870.29(x — 0.97)% — 576334.88(x — 0.97)>

An empirical submodel for demand can be constructed in a variety of other
ways. For example, rather than using the intervals for gallons demanded as given
in Table 5.6, we can use smaller intervals. If the intervals are small enough, the
midpoint of an interval could be a reasonable approximation to the demand for the
entire interval. Thus, a cumulative histogram similar to that in Figure 5.6 could
serve as a submodel directly. If preferred, a continuous submodel could be con-
structed readily from the refined data.

The purpose of our discussion has been to demonstrate how a submodel for a
probabilistic behavior can be constructed using Monte Carlo simulation and exper-
imental data. Now let’s see how the inventory problem can be simulated in general
terms.

An inventory strategy consists of specifying a delivery quantity Q and a time
T between deliveries, given values for storage cost per gallon per day s and a de-
livery cost d. If s and d are known, then a specific inventory strategy can be tested
using a Monte Carlo simulation algorithm, as follows:

Summary of Monte Carlo Inventory Algorithm Terms

Z o 0 e R o N

Delivery quantity of gasoline in gallons
Time between deliveries in days
Current inventory in gallons

Delivery cost in dollars per delivery
Storage cost per gallon per day

Total running cost

Average daily cost

Number of days to run the simulation

202 CHAPTER 5 Simulation Modeling

K Days remaining in the simulation
x; A random number in the interval [0, 1}
gi A daily demand

Flag An indicator used to terminate the algorithm

Monte Carlo Inventory Algorithm
Input Q,7,d,s,N

Output ¢
Step 1 Initialize:
K=N
1=0
C=0
Flag =0
Step 2 Begin the next inventory cycle with a delivery:
I=1+Q
C=C+d

Step 3 Determine if the simulation will terminate during this cycle:
IfT > K,thenset T = K and Flag = 1
Step 4 Simulate each day in the inventory cycle (or portion remaining):
Fori =1,2,...,T,do Steps 5-9
Step S Generate the random number x; .
Step 6 Compute g; using the demand submodel.
Step 7 Update the current inventory: [= I — g;.
Step8 Compute the daily storage cost and total running cost, unless the inventory has been
depleted: If I < 0, then set / = 0 and GOTO Step 9.
Else C=C+ I 5.
Step9 Decrement the number of days remaining in the simulation:
K=K-1
Step 10 If Flag = 0, then GOTO Step 2. Else GOTO Step 11.
Step 11 Compute the average daily cost: c = C/N.

Step 12 Output c.
STOP

Various strategies can now be tested with the algorithm to determine the av-
erage daily costs. You probably want to refine the algorithm to keep track of other
measures of effectiveness, such as unsatisfied demands and number of days without
gasoline, as suggested in the following problem set.

5.4 Problems

5.4 Inventory Model: Gasoline and Consumer Demand 203

1. Modify the inventory algorithm to keep track of unfilled demands and the total

number of days that the gasoline station is without gasoline for at least part of
the day.

. Most gasoline stations have a storage capacity Qmax that cannot be exceeded.

Refine the inventory algorithm to take this consideration into account. Because
of the probabilistic nature of the demand submodel at the end of the inventory
cycle, there might still be significant amounts of gasoline remaining. If several
cycles occur in succession, the excess might build up to Qax. Because there
is a financial cost in carrying excess inventory, this situation would be unde-
sirable. What alternatives can you suggest? Modify the inventory algorithm to
take your alternatives into account,

- In many situations, the time T between deliveries and the order quantity Q is

not fixed. Instead, an order is placed for a specific amount of gasoline. Depend-
ing on how many orders are placed in a given time interval, the time to fill an
order varies. You have no reason to believe that the performance of the delivery
operation will change. Therefore, you have examined records for the past 100
deliveries and found the following lag times or extra days required to fill your
order:

Lag time

(in days) Number of occurrences
2 10

3 25

4 30

5 20

6 13

7 2

Total: 100

Construct a Monte Carlo simulation for the lag time submodel. If you have
a handheld calculator or computer available, test your submodel by running
1000 trials and comparing the number of occurrences of the various lag times
with the historical data.

- Problem 3 suggests an alternative inventory strategy. When the inventory

reaches a certain level (an order point), an order can be placed for an optimal
amount of gasoline. Construct an algorithm that simulates this process and
incorporates probabilistic submodels for demand and lag times. How could
you use this algorithm to search for the optimal order point and the optimal
order quantity?

. In the case in which a gasoline station runs out of gas, the customer is sim-

ply going to go to another station. In many situations (name a few), however,

204 CHAPTER 5 Simulation Modeling

5.4 Projects

some customers will place a back order or collect a rain check. If the order is
not filled within a time period varying from customer to customer in a proba-
bilistic fashion, the customer will cancel his or her order. Suppose we examine
historical data for 1000 customers and find the data shown in Table 5.13. That
is, 200 customers will not even place an order, and an additional 150 customers
will cancel if the order is not filled within 1 day.

Table 5.13 Hypothetical data for a back
order submodel

Number of days Number
customer is willing to of Cumulative
wait before canceling occurrences occurrences
0 200 200
1 150 350
2 200 550
3 200 750
4 150 500
5 50 950
6 50 1000
1000

(a) Construct a Monte Carlo simulation for the back order submodel. If you
have a calculator or computer available, test your submodel by running
1000 trials and comparing the number of occurrences of the various can-
cellations with the historical data.

(b) Consider the algorithm you modified in Problem 1. Further modify the
algorithm to consider back orders. Do you think back orders should be
penalized in some fashion? If so, how would you do it?

. Complete the requirements of UMAP module 340, “The Poisson Random Pro-

cess,” by Carroll O. Wilde. Probability distributions are introduced to obtain
practical information on random arrival patterns, interarrival times or gaps be-
tween arrivals, waiting line buildup, and service loss rates. The Poisson distri-
bution, the exponential distribution, and Erlang’s formulas are used. The mod-
ule requires an introductory probability course, the ability to use summation
notation, and basic concepts of the derivative and the integral from calculus.
Prepare a 10-min summary of the module for a classroom presentation.

- Assume a storage cost of $0.001 per gallon per day and a delivery charge of

$500 per delivery. Construct a computer code of the algorithm you constructed
in Problem 4 and compare various order points and order quantity strategies.

5.5 Queuing Models 205

5.5 Queuing Models

EXAMPLE 1

A Harbor System

Consider a small harbor with unloading facilities for ships. Only one ship can be
unloaded at any one time. Ships arrive for unloading of cargo at the harbor, and
the time between the arrival of successive ships varies from 15 to 145 min. The
unloading time required for a ship depends on the type and amount of cargo and
varies from 45 to 90 min. We seek answers to the following questions:

1. What is the average and maximum times per ship in the harbor?

2. If the waiting time for a ship is the time between its arrival and the start of
unloading, what are the average and maximum waiting times per ship?

3. What percentage of the time are the unloading facilities idle?

4. What is the length of the longest queue?

To obtain some reasonable answers, we can simulate the activity in the harbor
using a computer or programmable calculator. We assume the arrival times between
successive ships and unloading time per ship are uniformly distributed over their
respective time intervals. For instance, the arrival time between ships can be any
integer between 15 and 145, and any integer within that interval can appear with
equal likelihood. Before giving a general algorithm to simulate the harbor system,
le’s consider a hypothetical situation with five ships.

We have the following data for each ship:

Shipl1 Ship2 Ship3 Ship4 Ships

Time between successive ships 20 30 15 120 25
Unload time 55 45 60 75 80

Because Ship | arrives 20 min after the clock commences at t = 0 min,
the harbor facilities are idle for 20 min at the start. Ship 1 immediately begins to
unload. The unloading takes 55 min; meanwhile, Ship 2 arrives on the scene at
t = 20 + 30 = 50 min after the clock begins. Ship 2 cannot start to unload until
Ship 1 finishes unloading at 7 = 20 + 55 = 75 min. This means that Ship 2 must
wait 75 — 50 = 25 min before unloading begins. The situation is depicted in the
following timeline diagram:

Ship 1 Ship 2 arrives

am';es l . Ship 1 finishes unloading:
Idie ' ' start unloading Ship 2 R
0 20 50 75 Clock time (min)

Timeline 1

206

CHAPTER 5 Simulation Modeling

Now before Ship 2 starts to unload, Ship 3 arrives at time ¢t = 50 + 15 = 65 min.
Because the unloading of Ship 2 starts at # = 75 min and it takes 45 min to unload,
unloading Ship 3 cannot start until t = 75445 = 120 min, when Ship 2 is finished.
Thus, Ship 3 must wait 120 — 65 = 55 min. The situation is depicted in the next
timeline diagram:

Ship 2 finishes unloading:
Ship3 start unloading Ship 3

arrives ¢
Idl '
ydie; L1 i >
0 20 50 6575 120 Clock time (min)

Timeline 2

Ship 4 does not arrive in the harbor until ¢+ = 65 + 120 = 185 min. There-
fore, Ship 3 has already finished unloading at t+ = 120 + 60 = 180 min, and the
harbor facilities are idle for 185 — 180 = 5 min. Moreover, the unloading of Ship 4
commences immediately upon its arrival, as depicted in the next diagram:

Ship 3 finishes unloading v1——Ship 4 arrives
il

Jdle L) i >
0 20 50 6575 120 180 185 Clock time (min)

Timeline 3

Finally, Ship 5 arrives at t = 185+ 25 = 210 min, before Ship 4 finishes unloading
att = 185+ 75 = 260 min. Thus, Ship 5 must wait 260 — 210 = 50 min before
it starts to unload. The simulation is complete when Ship 5 finishes unloading at
t =260 + 80 = 340 min. The final situation is shown in the next diagram:

Ship 5
Ship 4 finishes unloading finishes
Ship 5 arrives unloading
Idle j * l *
Jdle, L1] Wl 1 I)
0 20 50 6575 120 180 185 210 260 340
Timeline 4

In Figure 5.9, we summarize the waiting and unloading times for each of the five
hypothetical ship arrivals. In Table 5.14, we summarize the results of the entire
simulation of the five hypothetical ships. Note the total waiting time spent by all
five ships before unloading is 130 min. This waiting time represents a cost to the
shipowners and is a source of customer dissatisfaction with the docking facilities.
On the other hand, the docking facility has only 25 min of total idle time. It is in
use 315 out of the total 340 min in the simulation, or approximately 93% of the
time.

5.5 Queuing Models 207

o < < QD
Figure 5.9 o & Bgg 8 22 3 2 I
Idle and unload?ng —t ——+ + H———t | i ~ Time
times for the ships and ; [:::l Ship | ! X ll : | (min)
docking facilities | i 1 I | !
IR i = . : ,
Lt - | |
b Ship 3! I 1
| | I | | 1
] | | 1 r :
N {m | |
f)
| I ! : Ship §
1 t | |
D | Unloading
facilities
Idle/wait time
D Unioading time
Table 5.14 Summary of the harbor system simulation
Random time Queue Random Time Dock

Ship between Armival Start lemgthat Wait unload in idle
no. ship arrivals time service arrival time time harbor time

| 20 20 20 0 0 55 55 20
2 30 50 75 1 25 45 70 0
3 15 65 120 2 55 60 115 0
4 120 185 185 0 0 15 75 5
5 25 210 260 | 50 80 130 0
Totals (if appropriate): 130 25
Averages (if appropriate): 26 63 89

Note: All times are given in minutes after the start of the clock at time ¢ = 0.

Suppose the awners of the docking facilities are concerned with the qual-
ity of service they are providing and want various management alternatives to be
evaluated to determine if improvement in service justifies the added cost. Several
statistics can help in evaluating the quality of the service. For example, the maxi-
mum time a ship spends in the harbor is 130 min by Ship 5, whereas the average
is 89 min (Table 5.14). Generally, customers are very sensitive to the amount of
time spent waiting. In this example, the maximum amount of time spent waiting
for a facility is 55 min, whereas the average time spent waiting is 26 min. Some
customers are apt to take their business elsewhere if queues are too long. In this
case, the longest queue is two. The following Monte Carlo simulation algorithm
computes such statistics to assess various management alternatives.

Summary of Harbor System Algorithm Terms

between; Time between successive arrivals of Ships i and i — 1 (a random integer varying
between 15 and 145 min)

208 CHAPTER 5 Simulation Modeling

arrive;
unload;

start;
idle;

wait;
finish;

harbor;
HARTIME
MAXHAR
WAITIME
MAXWAIT
IDLETIME

Time from start of clock at + = 0 when Ship i arrives at the harbor for unloading

Time required to unload Ship i at the dock (a random integer varying between 45
and 90 min) :

Time from start of clock at which Ship i commences its unloading

Time for which dock facilities are idle immediately before commencement of un-
loading Ship i

Time Ship i waits in the harbor after arrival before unloading commences

Time from start of clock at which service for Ship i is completed at the unloading
facilities

Total time Ship i spends in the harbor

Average time per ship in the harbor

Maximum time of a ship in the harbor

Average waiting time per ship before unloading

Maximum waiting time of a ship

Percentage of tofal simulation time unloading facilities are idle

Harbor System Simulation Algorithm

Input

Output
Step 1
Step 2

Step 3

Step 4
Step 5

Step 6

Step 7

Step 8

Step 9

Total number # of ships for the simulation.
HARTIME, MAXHAR, WAITIME, MAXWAIT, and IDLETIME,
Randomly generate between; and unload;. Then set arrive; = between;.
Initialize all output values:

HARTIME = unload;, MAXHAR = unload;,

WAITIME = 0, MAXWAIT = 0, IDLETIME = arrive,
Calculate finish time for unloading of Ship:

finish; = arrive; + unload,
Fori =2,3,...,n,do Steps 5-16.

Generate the random pair of integers between; and unload; over their respective
time intervals.

Assuming the time clock begins at # = 0 min, calculate the time of arrival for Ship;:
arrive; = arrive; _| + between;

Calculate the time difference between the arrival of Ship, and the finish time for
unloading the previous Ship;_;:

timediff = arrive; — finish;_,

For nonnegative timediff, the unloading facilities are idle:
idle; = timediff and wait; = 0

For negative timediff, Ship; must wait before it can unload:
wait; = —timediff and idle; =0

Calculate the start time for unloading Ship;:
start; = arrive; + wait;

SUMAN MAITY
Highlight

Step 10
Step 11

Step 12
Step 13

Step 14
Step 15
Step 16

Step 17

Step 18

5.5 Queuing Models 209

Calculate the finish time for unloading Ship;:
finish; = start; 4+ unload;
Calculate the time in harbor for Ship;:
harbor; = wait; + unload;
Sum harbor; into total harbor time HARTIME for averaging.

If harbor; > MAXHAR, then set MAXHAR = harbor;. Otherwise leave
MAXHAR as is.

Sum wait; into total waiting time WAITIME for averaging.
Sum idle; into total idle time IDLETIME.

If wait; > MAXWAIT, then set MAXWAIT = wait;. Otherwise leave MAXWAIT
as is.

Set HARTIME = HARTIME/n, WAITIME = WAITIME/n, and IDLETIME =
IDLETIME/finish, .

OUTPUT (HARTIME, MAXHAR, WAITIME, MAXWAIT, IDLETIME)
STOP

Table 5.15 gives the results, according to the preceding algorithm, of six in-
dependent simulation runs of 100 ships each.

Table 5.15 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 106 8 101 116 112 9
Maximum time of a ship in the harbor 287 180 233 280 234 264
Average waiting time of a ship 39 20 35 50 44 27
Maximum waiting time of a ship 213 118 172 203 167 184

Percentage of time dock facilities areidle 0.18 0.17 0.15 020 0.14 0.21

Note: All imes are given in minutes. Time between successive ships is 15-145 min. Unloading time
per ship varies from 45 to 90 min.

Now suppose you are a consultant for the owners of the docking facilities.
What would be the effect of hiring additional labor or acquiring better equipment
for unloading cargo so that the unloading time interval is reduced to between 35 and
75 miun per ship? Table 5.16 gives the results based on our simulation algorithm.

Table 5.16 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 74 62 64 67 67 73
Maximum time of a ship in the harbor 161 116 167 178 173 190
Average waiting time of a ship 19 6 10 i2 12 16
Maximum waiting time of a ship 102 58 102 110 104 131

Percentage of time dock facilities are idle 0.25 033 032 030 031 027

Note: All times are given in minutes. Time between successive ships is 15-145 min. Unloading time
per ship varies from 35 to 75 min.

210

CHAPTER 5 Simulation Modeling

You can see from Table 5.16 that a reduction of the unloading time per ship
by 10 to 15 min decreases the time ships spend in the harbor, especially the waiting
times. However, the percentage of the total time during which the dock facilities are
idle nearly doubles. The situation is favorable for shipowners because it increases
the availability of each ship for hauling cargo over the long run. Thus, the traffic
coming into the harbor is likely to increase. If the traffic increases to the extent
that the time between successive ships is reduced to between 10 and 120 min, the
simulated results are shown in Table 5.17. We can see from this table that the ships
again spend more time in the harbor with the increased traffic, but now harbor
facilities are idle much less of the time. Moreover, both the shipowners and the
dock owners are benefiting from the increased business.

Table 5.17 Harbor system simulation resuits for 100 ships

Average time of a ship in the harbor 114 79 96 88 126 115
Maximum time of a ship in the harbor 248 224 205 171 371 223
Average waiting time of a ship 57 24 41 35 71 61
Maximum waiting time of a ship 175 152 155 122 309 173

Percentage of time dock facilities are idle 0.15 0.19 0.12 0.4 017 006

Note: All times are given in minutes. Time between successive ships is 10-120 min. Unloading time
per ship varies from 35 to 75 min.

Suppose now that we are not satisfied with the assumption that the arrival
time between ships (i.e., their interarrival times) and the unloading time per ship
are uniformly distributed over the time intervals 15 < between; < 145 and 45 <
unload; < 90, respectively. We decide to collect experimental data for the harbor

Table 5.18 Data collected for 1200 ships using the harbor facilities

Time Number Probability Number Probability
between of of Unloading of of
-arrivals occurrences occurrence time occurrences occurrence

15-24 1§ 0.009

25-34 35 0.029

3544 42 0.035 45-49 20 0.017

45-54 61 0.051 50-54 54 0.045

55-64 108 0.090 55-59 114 0.095

65-74 193 0.161 6064 103 0.086

75-84 240 0.200 65-69 156 0.130

85-94 207 0.172 70-74 223 0.185

95-104 150 0.125 75-79 250 0.208
105-114 85 0.071 80-84 1m 0.143
115-124 44 0.037 85-90 19 0.091
125-134 21 0.017 1200 1000
135-145 3 0.003

1200 1.000

Note: All times are given in minutes.

Figure 5.10

Cumulative histograms of
the time between ship
arrivals and the unloading
times, from the data in
Table 5.18

system and incorporate the results in our model, as discussed for the demand sub-
model in the previous section. We observe (hypothetically) 1200 ships using the
harbor to unload their cargoes, and we collect the data displayed in Table 5.18.
Following the procedures outlined in Section 5.4, we consecutively add to-
gether the probabilities of each individual time interval between arrivals as well as
probabilities of each individual unloading time interval. These computations resuit

5.5 Queuing Models

in cumulative histograms depicted in Figure 5.10.

—» Time

A
ok 043 980 997 1.000
g 872
E 08 747
54
<
; 0.6 F 575
g
g 04 375
4
:‘g 214
£ 027 124
] 038 073f
00 009,-—|
288 98808882849
a. Time between arrivals
10k 1.000
.909
]
=1
E 08 F 766
Q
3
S
> 06 558
.E
3
g 04f .373
(5]
>
:o_g .243
g 02 .157
o 062
Lo17f—]
—» Time
R R

b. Unloading time

212 CHAPTER 5 Simulation Modeling

Next we use random numbers uniformly distributed over the interval 0 <
x < 1 to duplicate the various interarrival times and unloading times based on the
cumulative histograms. We then use the midpoints of each interval and construct
linear splines through adjacent data points. (We ask you to complete this construc-
tion in Problem 1.) Because it is easy to calculate the inverse splines directly, we

do so and summarize the results in Tables 5.19 and 5.20.

Table 5.19 Linear segment submodels provide for
the time between arrivals of successive ships as a
function of a random number in the interval [0, 1]

Random number Corresponding
interval arrival time Inverse linear spline

0 <x <0.009 15<h <20 b = 555.6x + 15.0000
0.009 < x < 0.038 20<b<30 b = 344.8x + 16.8966
0.038 <x <0.073 30<b<4d b =285.7x + 19.1429
0.073 <x <0.124 40<bh <50 b =196.1x + 25.6863
0.124 <x <0.214 50<b <60 b=111.1x + 36.2222
0.214 < x <0.375 60 <b <70 b =62.1x + 46.7080
0.375 <x < 0.575 70<b <80 b = 50.0x + 51.2500
0.575 < x <0.747 80 <bh <90 b = 58.1x + 46.5698
0747 <x <0.872 90 <b <100 b=280.0x +30.2400
0872 <x <0943 100<b <110 b =140.8x — 22.8169
0943 <x <0980 110<b <120 b =1270.3x — 144.8649
0980 <x <0997 120<b <130 b =588.2x — 456.4706
0997 <x <1000 130<b<145 b =5000.0x — 4855

Table 5.20 Linear segment submodels provide for
the unloading time of a ship as a function of a
random number in the interval [0, 1]

Random number Corresponding
interval unloading time Inverse linear spline

0<x <0017 45 <u <475 u = 147x +45.000
0017<x <0062 475<u<525 u=1111x+45611
0062 <x <0.157 525=<u <575 u=>53x+49.237
0.157 <x <0243 575<u <625 u=>58x+48372
0243 <x <0373 625<u <675 u=73846x+53.154
0373 <x <0558 675<u<725 u=27x+51419
0558 <x <0766 725<u<715 u=24x+59.087
0766 <x <0909 775<u <825 u=235x+50717
0909 <x <1000 825<u<9 u=28241x +7.582

Finally, we incorporate our linear spline submodels into the simulation model

for the harbor system by generating between; and unload; fori = 1,2, ..

.,hin

Steps 1 and 5 of our algorithm, according to the rules displayed in Tables 5.19 and

EXAMPLE 2

5.5 Queuing Models 213

5.20. Employing these submodels, Table 5.21 gives the results of six independent
simulation runs of 100 ships each. |

Table 5.21 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 108 95 125 78 123 101
Maximum time of a ship in the harbor 237 188 218 133 250 191
Average waiting time of a ship 38 25 54 9 53 31
Maximum waiting time of a ship 156 118 137 65 167 124

Percentage of time dock facilities are idle 0.09 0.09 0.08 0.12 006 0.10

Note: Based on the data exhibited in Table 5.18. Al times are given in minutes.

Morning Rush Hour

In the previous example, we initially considered a harbor system with a single fa-
cility for unloading ships. Such problems are often called single-server queues. In
this example, we consider a system with four elevators, illustrating multiple-server
queues. We discuss the problem and present the algorithm in Appendix B.

Consider an office building with 12 floors in a metropolitan area of some
city. During the morning rush hour, from 7:50 to 9:10 A.M., workers enter the
lobby of the building and take an elevator to their floor. There are four elevators
servicing the building. The time between arrivals of the customers at the building
varies in a probabilistic manner every 0-30 sec, and upon arrival each customer
selects the first available elevator (numbered 1-4). When a person enters an elevator
and selects the floor of destination, the elevator waits 15 sec before closing its doors.
If another person arrives within the 15-sec interval, the waiting cycle is repeated.
If no person arrives within the 15-sec interval, the elevator departs to deliver all
of its passengers. We assume no other passengers are picked up along the way.
After delivering its last passenger, the elevator returns to the main floor, picking
up no passengers on the way down. The maximum occupancy of an elevator is 12
passengers. When a person arrives in the lobby and no elevator is available (because
all four elevators are transporting their load of passengers), a queue begins to form
in the lobby.

The management of the building wants to provide good elevator service
to its customers and is interested in exactly what service it is now giving. Some
customers claim that they have to wait too long in the lobby before an eleva-
tor returns. Others complain that they spend too much time nding the eleva-
tor, and still others say that there is considerable congestion in the lobby during
the morning rush hour. What is the real situation? Can the management resolve
these complaints by a more effective means of scheduling or utilizing the eleva-
tors?

We wish to simulate the elevator system using an algorithm for computer
implementation that will give answers to the following questions:

1. How many customers are actually being serviced in a typical morning
rush hour?

SUMAN MAITY
Highlight

214 CHAPTER 5 Simulation Modeling

5.5 Problems

2. If the waiting time of a person is the time the person stands in a queune—the
time from arrival at the lobby until entry into an available elevator—what
are the average and maximum times a person waits in a queue?

3. What is the length of the longest queue? (The answer to this question
will provide the management with information about congestion in the
lobby.)

4. If the delivery time is the time it takes a customer to reach his or her
floor after arrival in the lobby, including any waiting time for an available
elevator, what are the average and maximum delivery times?

5. What are the average and maximum times a customer actually spends in
the elevator?

6. How many stops are made by each elevator? What percentage of the total
morning rush hour time is each elevator actually in use?

An algorithm is presented in Appendix B. [|

. Using the data from Table 5.18 and the cumulative histograms of Figure 5.10,

construct cumulative plots of the time between arrivals and unloading time
submodels (as in Figure 5.7). Calculate equations for the linear splines over
each random number interval. Compare your results with the inverse splines
given in Tables 5.19 and 5.20.

. Use a smooth polynomial to fit the data in Table 5.18 to obtain arrivals and

unloading times. Compare results to those in Tables 5.19 and 5.20.

. Modify the ship harbor system algorithm to keep track of the number of ships

.

waiting in the queue.

Most small harbors have a maximum number of ships Npmax that can be accom-
modated in the harbor area while they wait to be unloaded. If a ship cannot get
into the harbor, assume it goes elsewhere to unload its cargo. Refine the ship
harbor algorithm to take these considerations into account.

. Suppose the owners of the docking facilities decide to construct a second fa-

cility to accommodate the unloading of more ships. When a ship enters the
harbor, it goes to the next available facility, which is facility 1 if both facil-
ities are available. Using the same assumption for interarrival times between
successive ships and unloading times as in the initial text example, modify the
algorithm for a system with two facilities.

- Construct a Monte Carlo simulation of a baseball game. Use individual batting

statistics to simulate the probability of a single, double, triple, home run, or an
out. In a more refined model, how would you handle walks, hit batsman, steals,
and double plays?

5.5 Projects

5.5 Queuing Models 215

1. Write a computer simulation to implement the ship harbor algorithm.

2. Write a computer simulation to implement a baseball game between your two

favorite teams (see Problem 6).

3. Pick a traffic intersection with a traffic light. Collect data on vehicle arrival

times and clearing times. Build a Monte Carlo simulation to model traffic flow
at this intersection.

4. In the Los Angeles County School District, substitute teachers are placed in a

pool and paid whether they teach or not. It is assumed that if the need for sub-

stitutes exceeds the size of the pool, classes can be covered by regular teachers,

but at a higher pay rate. Letting x represent the number of substitutes needed

on a given day, § the pool size, p the amount of pay for pool members, and r
the daily overtime rate, we have for the cost

pS ifx < S

CEH=1 pstx=8r ifx>S$]

Here, we assume p < r.

(a) Use the data provided for the number of substitutes needed on Mondays
to simulate the situation in an attempt to optimize the pool size. The op-
timized pool will be the one with the lowest expected cost to the school
district. Use for pay rates, p = $45 and r = $81. Assume that the data are
distributed uniformly.

i. Make 500 simulations at each value of S from S = 100 to § = 900 in
steps of 100 using the averages of the 500 runs to estimate the cost for
each value of .

Demand for substitute teachers on Mondays

Number of teachers Relative percentage Cumulative percentage

201-275 21 27
276-350 2.7 54
351425 27 8.1
426-500 27 10.8
501-575 16.2 27

576650 10.8 378
651-725 48.6 86.4
726-800 8.1 945
801-875 2.7 97.2

876-950 2.7 99.9

216 CHAPTER 5 Simulation Modeling

ii. Narrow the search for the best value of S to an interval of length 200
and make runs of 1000 simulations for each of ten equally spaced
values of § in this interval.

iii. Continue the process narrowing the search for the optimal size of the
pool, each time stepping the values of § a smaller amount and in-
creasing the number of iterations for better accuracy. When you have
determined the optimal value for the pool size, S, submit your choice
with substantiating evidence.

(b) Redo part (a) with p = $36 and r = $81.

(¢) Redo part (a) using the data provided for Tuesdays. Assume p = $45 and
r = $81.

(d) Redo part (c) using the data for Tuesdays assuming p = $36 and r = $81.

Demand for substitute teachers on Tuesdays

Number of teachers Relative percentage Cumulative percentage

201-275 2.5 25
276-350 2.5 50
351425 50 10.0
426-500 7.5 17.5
501-575 12.5 30.0
576-650 17.5 475
651-725 425 90.0
726-800 50 95.0
801-875 25 97.5

876-950 25 100.0

