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i . . e along with a large
Now, if we consider an ensemble of systems (i.e., the given system, g
number of menta] |

f the ensem-

) copies of it) then, at any time ¢, the various memberrrfi:rostates must
ble will be in a1l Sorts of possible microstates; indeed, each one of these to all members
be consistent with the given macrostate that is supposed to be cc.)mmon- of alaWERTE oF
of the ensemble. In the phase space, the corresponding picture will cor.131-s s ol o
I€presentative points, one for each member of the ensemble, all lying withiny s tinual
region of this space. As time passes, every member of the enser_nble unde.l'go_es at;:lon 1nu

change of microstates; correspondingly, the representative pomts_constltutlrfg € swarm
continually move along their respective trajectories. The overall picture of this movement
Possesses some important features that are best illustrated in terms of what we call a
density function p(q, p; 1).* This function is such that, at any time ¢, the number of repre-
sentative points in the “volume element” (d3V qd3N p) around the point (g, p) of the phase
Space Is given by the product p(q, p; )d*¥qd3Np. Clearly, the density function p(q,p;1)

symbolizes the manner in which the members of the ensemble are distributed over all

possible microstates at different instants of time. Accordingly, the ensemble average (f) of a
given physical quantity f(q, p),

which may be different for systems in different microstates,
would be given by '

(f) = 11@Pr@p1dNgaNp :

Jp@p0ydNgdNy 3)

The integrations 1n (3) extend over the whole of the phase space; however, it is only
the populated regions of the phase s

pace (p #0) that really contribute. We note that, in
general, the ensemble average ( f) may itself be a function of time |
An ensemble is said to be stqyj :

onary if p does not de . o . -
all times pend explicitly on time, that is, 2
dp
5[- = 0. . (4)
'Note that (g,

p) is an abbreviation of (g;,

pi) = (ql.---.an.pl.---.PaN)-
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i 27
2.2 Liouville's theorem and its consequences

Clearly, for such an ensemble the average value (f) of any physical quantity f(4:P) will
be independent of time. Naturally, a stationary ensemble qualifies to representa system in
equilibrium. To determine the circumstances under which equation (4) may hold, we have
to make a rather detailed study of the movement of the representative points in the phase
space.

2.2 Liouville's theorem and its consequences

Consider an arbitrary “volume” o in the relevant region of the phase space and let the
“surface” enclosing this volume be denoted by o; see Figure 2.1. Then, the rate at which
the number of representative points in this volume increases with time is written as

N pdow, 1)

@

where dw = (d*Nqd®Np). On the other hand, the net rate at which the representative points
“flow” out of w (across the bounding surface o) is given by

fpv-fzda; @)

o

here, v is the velocity vector of the representative points in the region of the surface
element do while 71 is the (outward) unit vector normal to this element. By the divergence

theorem, (2) can be written as

f div(pv)dw; 3)

of course, the operation of divergence here means

g N8 ra B g
div(pr) = [a—m(pq:') + @;(ppi) - (4)

i=1

FIGURE 2.1 The “hydrodynamics” of the representative points in the phase space. _
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es” or “sinks” in the phase space and hence th

i urc < )
In view of the fact that there are no "0 rved,? we have, by (1) and (3),

‘ﬂ I i nse

g fede=- [ e, )
i J

that is,

f [ %% + c\liv(pv)]dw =0. N (5

0]

Now, the necessary and sufficient condition that integrzzl (6) .vanish t_‘or, all arbitrary
Volu;nes @ Is that the integrand itself vanish everywhere in the relevant region of the phage
Space. Thus, we must have

ap . o
? which is the equation of continuity for the swarm of th

e representative points.
5 Combining (4) and (7), we obtain

|
4
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Q
Q
2
+
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+
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Q
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I
=

Further since p = ;
. = '- =p (C]; B t): the I'Emai i
total” time derivatiye of p, wi i

.‘ (10)3
bodieg Lz’ouville’s L

’ ¢orem (1g3g,) :

e re : * i

ta presemat.“’e Points, a5 pigyypg b According ¢ this th
YS Constan¢ In time, Y an Observer Moving

€ Iepresent,

€orem, the “local”
With a representa-
tive points moves in

a‘ny {lew memb o id
H] stanqg for the sum €rs being added nor are anyo
3N

9 oH
= 9 oy
i< (a% % 353,
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2.2 Liouville’s theorem and its consequences 29

the phase space in essentially the same manner as an incompressible fluid moves in the

physical space!
A distinction must be made, however, between equation (10) on one hand and

equation (2.1.4) on the other. While the former derives from the basic mechanics of the
particles and is therefore quite generally true, the latter is only a requirement for equi-
librium which, in a given case, may or may not be satisfied. The condition that ensures

simultaneous validity of the two equations is clearly

o H1 = Z(a—q—lqﬁa—mp) | (1)

Now, one possible way of satisfying (11) is to assume that p, which is already assumed
to have no explicit dependence on time, is independent of the coordinates (g, p) as well;

that is,

p(g,p) = const. 12)

over the relevant region of the phase spacé (and, of course, is zero everywhere else). Physi-
cally, this choice corresponds to an ensemble of systems that at all times are uniformly
distributed over all possible microstates. The ensemble average (2.1.3) then reduces to

1
=— f f(apydw; )
© i |

here, w denotes the total “volume” of the relevant region of the phase space. Ciearly, in
this case, any member of the ensemble is equally likely to be in any one of the various
possible microstates, inasmuch as any representative point in the swarm is equally likely
to be in the neighborhood of any phase point in the allowed region of the phase space.
This statement is usually referred to as the f)ostulate of “equal a priori probabilities” for
the various possible microstates (or for the various volume elements in the allowed region
of the phase space); the resulting ensemble is referred to as the microcanonical ensemble.

A more general way of satisfying (11) is to assume that the dependence of p.on q,p)
comes only through an explicit dependence on the Hamiltonian H(g, p), that is,

p(q,p) = plH(q,p)); < B V)

condition (11) is then identically satisfied. Equation (14) provides a class of ’densiiy func-
tions for which the corresponding ensemble is statlonary In Chapter 3 we shall see that
the most natural choice in this class of ensembles is the one for which

p(q,p) x expl—H(q, p)/kT). ' (15)

The ensemble so defined is referred to as the canonical ensemble.
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d within this shell is given by

a range

The volume of the phase space enclose
! /
w= fdw = f (d3qu3Np), )

where the primed integration extends only over that part of the phase space which con-
forms to condition (1). It is clear that » will be a function of the parameters N, V, E,
and A.

Now, the microcanonical ensemble is a collection of systems for which the density
function p is, at all times, given by

P@p) =const. if (E-1a) <H(gp) < (B+ %A)]

d

ity for -inour origing] arl ume element dw locate
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2.3 The microcanonical ensemble 31

Now, the processes of time averaging and ensemble averaging are completely indepen-

dent, so the order in which they are performed may be reversed \without causing any
change in the value of (f). Thus

(f) =the ense‘mble average of (the time average of f).

Now, the time average of any physical quantity, taken over a sufficiently long interval of
time, must be the same for every member of the ensemble, for after all we are dealing

with only mental copies of a given system.* Therefore, taking an ensemble average thereof
should be inconsequential, and we may write

(f) = the long-time average of f,

where the latter may be taken over any member of the ensemble. Furthermore, the long-
time average of a physical quantity is all one obtains by making a measurement of that
quantity on the given system,; therefore, it may be identified with the value one expects to
obtain through experiment. Thus, we finally have

{ = fexp- (4)

This brings us to the most important result: the ensemble average of any physical quantity

f is identical to the value one expects to obtain on making an appropriate measurement on
the given system.

The next thing we look for is the establishment of a connection between the mechanics
of the microcanonical ensemble and the thermodynamics of the member systems. To do
this, we observe that there exists a direct correspondence between the various microstates
of the given system and the various locations in the phase space. The volume o (of the
allowed region of the phase space) is, therefore, a direct measure of the multiplicity I" of the
microstates accessible to the system. To establish a numerical correspondence between

“To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for any particular mem-
ber of the ensemble, the quantity f is averaged only over a short span of time, the result is bound to depend on the
relevant “subset of microstates” through which the system passes during that time. In the phase space, this will mean
an averaging over only a “part of the allowed region.” However, if we employ instead a sufficiently long interval of time,
the system may be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only on the macrostate of the system, and not on a subset of microstates.
Correspondingly, the averaging in the phase space would go over practically all parts of the allowed region, again “with-
out fear or favor.” In other words, the representative point of our system will have traversed each and every part of the
allowed region almost uniformly. This statement embodies the so-called ergodic theorem or ergodic hypothesis, which
was first introduced by Boltzmann (1871). According to this hypothesis, the trajectory of a representative point passes,
in the course of time, through each and every point of the relevant region of the phase space. A little reflection, however,
shows that the statement as such requires a qualification; we better replace it by the so-called quasiergodic hypothesis,
according to which the trajectory of a representative point traverses, in the course of time, any neighborhood of any point
of the relevant region. For further details, see ter Haar (1954, 1955), Farquhar (1964),

Now, when we consider an ensemble of systems, the foregoing statement should hold for every member of the
ensemble; thus, irrespective of the initial (and final) states of the various systems, the long-time average of any physical
quantity f should be the same for every member system.
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32 Chapter 2 » Elements of Ensemble Theory

and I', we need to discover a fundamental volume wo that could be regarded
" . _ " »” % TR . € ¥« 2
to one microstate.” Once this is done, we may say that, asymptotically, as eqlllvalent

I'=w/wo.
(5)

The thermodynamics of the system would then follow in the same way as in Sections ]
. $1.2-
1.4,

4, namely through the relationship

S = kInT = kIn(w/wo), etc. ©

onsists in determining wo. From dimensional considerations,
f an “angular momentum raised to the power 3N.” To
rtain simplified systems, both from the point of view
tribution of quantum states.

The basic problem then ¢
see (2), wp must be in the nature O

determine it exactly, we consider ce
of the phase space and from the point of view of the dis
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