### Deterministic vs. stochastic models

- In **deterministic** models, the output of the model is fully determined by the parameter values and the initial conditions.
- Stochastic models possess some inherent randomness.
  The same set of parameter values and initial conditions will lead to an ensemble of different outputs.
- Obviously, the natural world is buffeted by stochasticity. But, stochastic models are considerably more complicated. When do deterministic models provide a useful approximation to truly stochastic processes?

### Demographic vs. environmental stochasticity

- **Demographic stochasticity** describes the randomness that results from the inherently discrete nature of individuals. It has the largest impact on small populations.
- Environmental stochasticity describes the randomness resulting from any change that impacts an entire population (such as changes in the environment). Its impact does not diminish as populations become large.

## Stochastic models, brief mathematical considerations

- There are many different ways to add stochasticity to the same deterministic skeleton.
- Stochastic models in continuous time are hard.
- Gotelli provides a few results that are specific to one way of adding stochasticity.

# Demographic stochasticity has its biggest impact on small populations



6 runs of stochastic logistic growth model, carrying capacity = 10

## Demographic stochasticity has its biggest impact on small populations



6 runs of stochastic logistic growth model, carrying capacity = 1000

A stochastic version of the geometric population growth model

$$N_{t+1} = \lambda(t)N_t$$

- Suppose that  $\lambda$  has the following probability distribution:
  - = 0.9 with probability ½
  - = 1.1 with probability ½

What are typical behaviors of this population?





### Population size after 100 time steps, 1000 replicates



Log\_10 population size after 100 time steps, 1000 replicates



- Stochastic population growth yields log-normally distributed population sizes
- Many small populations, few large ones
- The rate of change of the average population size overestimates the "typical" growth rate experienced by most populations.

Mathematical details, for those interested:

$$E\left[\left(\frac{N_t}{N_0}\right)^{\frac{1}{t}}\right] < \left(\frac{E[N_t]}{N_0}\right)^{\frac{1}{t}} = E[\lambda]$$
 Average rate of change of the population Rate of change population

(this is Jensen's inequality)